Synergistic vasculogenic effects of AMD3100 and stromal-cell-derived factor-1α in vasa nervorum of the sciatic nerve of mice with diabetic peripheral neuropathy

2013 ◽  
Vol 354 (2) ◽  
pp. 395-407 ◽  
Author(s):  
Bae Jin Kim ◽  
Jong Kil Lee ◽  
Edward H. Schuchman ◽  
Hee Kyung Jin ◽  
Jae-sung Bae
2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Chunyang Xu ◽  
Biyu Hou ◽  
Ping He ◽  
Peng Ma ◽  
Xinyu Yang ◽  
...  

Oxidative stress has been recognized as the contributor to diabetic peripheral neuropathy (DPN). Antioxidant strategies have been most widely explored; nevertheless, whether antioxidants alone prevent DPN still remains inconclusive. In the present study, we established an in vitro DPN cell model for drug screening using Schwann RSC96 cells under high glucose (HG) stimulation, and we found that salvianolic acid A (SalA) mitigated HG-induced injury evidenced by cell viability and myelination. Mechanistically, SalA exhibited strong antioxidative effects by inhibiting 1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing reactive oxygen species (ROS), malondialdehyde (MDA), and oxidized glutathione (GSSG) content, as well as upregulating antioxidative enzyme mRNA expression. In addition, SalA significantly extenuated neuroinflammation with downregulated inflammatory factor mRNA expression. Furthermore, SalA improved the mitochondrial function of HG-injured Schwann cells by scavenging mitochondrial ROS, decreasing mitochondrial membrane potential (MMP), and enhancing ATP production, as well as upregulating oxidative phosphorylation gene expression. More importantly, we identified nuclear factor-E2-related factor 2 (Nrf2) as the upstream regulator which mediated protective effects of SalA on DPN. SalA directly bound to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) and thus disrupted the interaction of Nrf2 and Keap1 predicted by LibDock of Discovery Studio. Additionally, SalA significantly inhibited Nrf2 promoter activity and downregulated Nrf2 mRNA expression but without affecting Nrf2 protein expression. Interestingly, SalA upregulated the nuclear Nrf2 expression and promoted Nrf2 nuclear translocation by high content screening assay, which was confirmed to be involved in its antiglucotoxicity effect by the knockdown of Nrf2 in RSC96 cells. In KK-Ay mice, we demonstrated that SalA could effectively improve the abnormal glucose and lipid metabolism and significantly protect against DPN by increasing the mechanical withdrawal threshold and sciatic nerve conduction velocity and restoring the ultrastructural impairment of the injured sciatic nerve induced by diabetes. Hence, SalA protected against DPN by antioxidative stress, attenuating neuroinflammation, and improving mitochondrial function via Nrf2. SalA may be prospective therapeutics for treating DPN.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ji-Yin Zhou ◽  
Shi-Wen Zhou

The mechanisms leading to diabetic peripheral neuropathy are complex and there is no effective drug to treat it. As an active component of several traditional Chinese medicines, trigonelline has beneficial effects on diabetes with hyperlipidemia. The protective effects and the mechanism of trigonelline on diabetic peripheral neuropathy were evaluated in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats. Rats were divided into four groups at the end of week 2: control, diabetes, diabetes + trigonelline (40 mg/kg), and diabetes + sitagliptin (4 mg/kg). After 48-week treatment, technologies of nerve conduction, cold and hot immersion test, transmission electron microscopy, real-time PCR, and Western blotting were applied. Serum glucose, serum insulin, insulin sensitivity index, lipid parameters, body weight, sciatic nerve conduction velocity, nociception, glucagon-like peptide-1 receptor mRNA and protein, total and phosphorylated p38 mitogen-activated protein kinases protein expression, malonaldehyde content, and superoxide dismutase activity were altered in diabetic rats, and were near control levels treated with trigonelline. Slight micropathological changes existed in sciatic nerve of trigonelline-treated diabetic rats. These findings suggest that trigonelline has beneficial effects for diabetic peripheral neuropathy through glucagon-like peptide-1 receptor/p38 mitogen-activated protein kinases signaling pathway, nerve conduction velocity, antioxidant enzyme activity, improving micropathological changes of sciatic nerve and decreasing lipid peroxidation.


2012 ◽  
Vol 116 (6) ◽  
pp. 1357-1367 ◽  
Author(s):  
Dar-Yu Yang ◽  
Meei-Ling Sheu ◽  
Hong-Lin Su ◽  
Fu-Chou Cheng ◽  
Ying-Ju Chen ◽  
...  

Object Human amniotic fluid–derived mesenchymal stem cells (AFMSCs) have been shown to promote peripheral nerve regeneration. The expression of stromal cell–derived factor-1α (SDF-1α) in the injured nerve exerts a trophic effect by recruiting progenitor cells that promote nerve regeneration. In this study, the authors investigated the feasibility of intravenous administration of AFMSCs according to SDF-1α expression time profiles to facilitate neural regeneration in a sciatic nerve crush injury model. Methods Peripheral nerve injury was induced in 63 Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. The animals were randomized into 1 of 3 groups: Group I, crush injury as the control; Group II, crush injury and intravenous administration of AFMSCs (5 × 106 cells for 3 days) immediately after injury (early administration); and Group III, crush injury and intravenous administration of AFMSCs (5 × 106 cells for 3 days) 7 days after injury (late administration). Evaluation of neurobehavior, electrophysiological study, and assessment of regeneration markers were conducted every week after injury. The expression of SDF-1α and neurotrophic factors and the distribution of AFMSCs in various time profiles were also assessed. Results Stromal cell–derived factor-1α increased the migration and wound healing of AFMSCs in vitro, and the migration ability was dose dependent. Crush injury induced the expression of SDF-1α at a peak of 10–14 days either in nerve or muscle, and this increased expression paralleled the expression of its receptor, chemokine receptor type-4 (CXCR-4). Most AFMSCs were distributed to the lung during early or late administration. Significant deposition of AFMSCs in nerve and muscle only occurred in the late administration group. Significantly enhanced neurobehavior, electrophysiological function, nerve myelination, and expression of neurotrophic factors and acetylcholine receptor were demonstrated in the late administration group. Conclusions Amniotic fluid–derived mesenchymal stem cells can be recruited by expression of SDF-1α in muscle and nerve after nerve crush injury. The increased deposition of AFMSCs paralleled the expression profiles of SDF-1α and its receptor CXCR-4 in either muscle or nerve. Administration of AFMSCs led to improvements in neurobehavior and expression of regeneration markers. Intravenous administration of AFMSCs may be a promising alternative treatment strategy in peripheral nerve disorder.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Chengcheng Feng ◽  
Lijuan Xu ◽  
Shiyun Guo ◽  
Qian Chen ◽  
Yuguo Shen ◽  
...  

WenTong HuoXue Cream (WTHX-Cream) has been shown to effectively alleviate clinical symptoms of diabetic peripheral neuropathy (DPN). This study investigated the gene and protein expression of the pain-related molecule PLC-β3 in the dorsal root ganglion (DRG) of DPN rats. 88 specific pathogen-free male Wistar rats were randomly divided into placebo (10 rats) and DPN model (78 rats) groups, and the 78 model rats were used to establish the DPN model by intraperitoneal injection of streptozotocin and were then fed a high-fat diet for 8 weeks. These rats were randomly divided into the model group, the high-, medium-, and low-dose WTHX-Cream + metformin groups, the metformin group, the capsaicin cream group, and the capsaicin cream + metformin group. After 4 weeks of continuous drug administration, the blood glucose, body weight, behavioral indexes, and sciatic nerve conduction velocity were measured. The pathological structure of the DRG and the sciatic nerve were observed. PLC-β3 mRNA and protein levels in the DRG of rats were measured. Compared with the model group, the high-dose WTHX-Cream group showed increased sciatic nerve conduction velocity, improved sciatic nerve morphological changes, and increased expression of PLC-β3 mRNA and protein in the DRG. This study showed that WTHX-Cream improves hyperalgesia symptoms of DPN by inhibiting the reduction of PLC-β3 mRNA and protein expression in the diabetic DRG of DPN rats.


Sign in / Sign up

Export Citation Format

Share Document