Taurine protects against myelin damage of sciatic nerve in diabetic peripheral neuropathy rats by controlling apoptosis of schwann cells via NGF/Akt/GSK3β pathway

2019 ◽  
Vol 383 (2) ◽  
pp. 111557 ◽  
Author(s):  
Kaixin Li ◽  
Xiaoxia Shi ◽  
Mengxin Luo ◽  
Inam-u-llah ◽  
Pingan Wu ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Bei-Yan Liu ◽  
Lin Li ◽  
Li-Wei Bai ◽  
Chang-Shui Xu

Diabetic peripheral neuropathy (DPN) is a prevalent diabetes mellitus (Feldman et al., 2017) complication and the primary reason for amputation. Meanwhile, long non-coding RNAs (lncRNAs) are a type of regulatory non-coding RNAs (ncRNAs) that broadly participate in DPN development. However, the correlation of lncRNA X-inactive specific transcript (XIST) with DPN remains unclear. In this study, we were interested in the role of XIST in the modulation of DPN progression. Significantly, our data showed that the expression of XIST and sirtuin1 (SIRT1) was inhibited, and the expression of microRNA-30d-5p (miR-30d-5p) was enhanced in the trigeminal sensory neurons of the diabetic mice compared with the normal mice. The levels of LC3II and Beclin-1 were inhibited in the diabetic mice. The treatment of high glucose (HG) reduced the XIST expression in Schwann cells. The apoptosis of Schwann cells was enhanced in the HG-treated cells, but the overexpression of XIST could block the effect in the cells. Moreover, the levels of LC3II and Beclin-1 were reduced in the HG-treated Schwann cells, while the overexpression of XIST was able to reverse this effect. The HG treatment promoted the production of oxidative stress, while the XIST overexpression could attenuate this result in the Schwann cells. Mechanically, XIST was able to sponge miR-30d-5p and miR-30d-5p-targeted SIRT1 in the Schwann cells. MiR-30d-5p inhibited autophagy and promoted oxidative stress in the HG-treated Schwann cells, and SIRT1 presented a reversed effect. MiR-30d-5p mimic or SIRT1 depletion could reverse XIST overexpression-mediated apoptosis and autophagy of the Schwann cells. Thus, we concluded that XIST attenuated DPN by inducing autophagy through miR-30d-5p/SIRT1 axis. XIST and miR-30d-5p may be applied as the potential targets for DPN therapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Chunyang Xu ◽  
Biyu Hou ◽  
Ping He ◽  
Peng Ma ◽  
Xinyu Yang ◽  
...  

Oxidative stress has been recognized as the contributor to diabetic peripheral neuropathy (DPN). Antioxidant strategies have been most widely explored; nevertheless, whether antioxidants alone prevent DPN still remains inconclusive. In the present study, we established an in vitro DPN cell model for drug screening using Schwann RSC96 cells under high glucose (HG) stimulation, and we found that salvianolic acid A (SalA) mitigated HG-induced injury evidenced by cell viability and myelination. Mechanistically, SalA exhibited strong antioxidative effects by inhibiting 1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing reactive oxygen species (ROS), malondialdehyde (MDA), and oxidized glutathione (GSSG) content, as well as upregulating antioxidative enzyme mRNA expression. In addition, SalA significantly extenuated neuroinflammation with downregulated inflammatory factor mRNA expression. Furthermore, SalA improved the mitochondrial function of HG-injured Schwann cells by scavenging mitochondrial ROS, decreasing mitochondrial membrane potential (MMP), and enhancing ATP production, as well as upregulating oxidative phosphorylation gene expression. More importantly, we identified nuclear factor-E2-related factor 2 (Nrf2) as the upstream regulator which mediated protective effects of SalA on DPN. SalA directly bound to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) and thus disrupted the interaction of Nrf2 and Keap1 predicted by LibDock of Discovery Studio. Additionally, SalA significantly inhibited Nrf2 promoter activity and downregulated Nrf2 mRNA expression but without affecting Nrf2 protein expression. Interestingly, SalA upregulated the nuclear Nrf2 expression and promoted Nrf2 nuclear translocation by high content screening assay, which was confirmed to be involved in its antiglucotoxicity effect by the knockdown of Nrf2 in RSC96 cells. In KK-Ay mice, we demonstrated that SalA could effectively improve the abnormal glucose and lipid metabolism and significantly protect against DPN by increasing the mechanical withdrawal threshold and sciatic nerve conduction velocity and restoring the ultrastructural impairment of the injured sciatic nerve induced by diabetes. Hence, SalA protected against DPN by antioxidative stress, attenuating neuroinflammation, and improving mitochondrial function via Nrf2. SalA may be prospective therapeutics for treating DPN.


2017 ◽  
Vol 13 (5) ◽  
pp. 640-651 ◽  
Author(s):  
Rui Li ◽  
Jianfeng Ma ◽  
Yanqing Wu ◽  
Matthew Nangle ◽  
Shuang Zou ◽  
...  

2018 ◽  
Vol 32 (12) ◽  
pp. 6911-6922 ◽  
Author(s):  
Longfei Jia ◽  
Michael Chopp ◽  
Lei Wang ◽  
Xuerong Lu ◽  
Alexandra Szalad ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ji-Yin Zhou ◽  
Shi-Wen Zhou

The mechanisms leading to diabetic peripheral neuropathy are complex and there is no effective drug to treat it. As an active component of several traditional Chinese medicines, trigonelline has beneficial effects on diabetes with hyperlipidemia. The protective effects and the mechanism of trigonelline on diabetic peripheral neuropathy were evaluated in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats. Rats were divided into four groups at the end of week 2: control, diabetes, diabetes + trigonelline (40 mg/kg), and diabetes + sitagliptin (4 mg/kg). After 48-week treatment, technologies of nerve conduction, cold and hot immersion test, transmission electron microscopy, real-time PCR, and Western blotting were applied. Serum glucose, serum insulin, insulin sensitivity index, lipid parameters, body weight, sciatic nerve conduction velocity, nociception, glucagon-like peptide-1 receptor mRNA and protein, total and phosphorylated p38 mitogen-activated protein kinases protein expression, malonaldehyde content, and superoxide dismutase activity were altered in diabetic rats, and were near control levels treated with trigonelline. Slight micropathological changes existed in sciatic nerve of trigonelline-treated diabetic rats. These findings suggest that trigonelline has beneficial effects for diabetic peripheral neuropathy through glucagon-like peptide-1 receptor/p38 mitogen-activated protein kinases signaling pathway, nerve conduction velocity, antioxidant enzyme activity, improving micropathological changes of sciatic nerve and decreasing lipid peroxidation.


2020 ◽  
Vol 22 (1) ◽  
pp. 62
Author(s):  
Yukio Takeshita ◽  
Ryota Sato ◽  
Takashi Kanda

In diabetic peripheral neuropathy (DPN), metabolic disorder by hyperglycemia progresses in peripheral nerves. In addition to the direct damage to peripheral neural axons, the homeostatic mechanism of peripheral nerves is disrupted by dysfunction of the blood–nerve barrier (BNB) and Schwann cells. The disruption of the BNB, which is a crucial factor in DPN development and exacerbation, causes axonal degeneration via various pathways. Although many reports revealed that hyperglycemia and other important factors, such as dyslipidemia-induced dysfunction of Schwann cells, contributed to DPN, the molecular mechanisms underlying BNB disruption have not been sufficiently elucidated, mainly because of the lack of in vitro studies owing to difficulties in establishing human cell lines from vascular endothelial cells and pericytes that form the BNB. We have developed, for the first time, temperature-sensitive immortalized cell lines of vascular endothelial cells and pericytes originating from the BNB of human sciatic nerves, and we have elucidated the disruption to the BNB mainly in response to advanced glycation end products in DPN. Recently, we succeeded in developing an in vitro BNB model to reflect the anatomical characteristics of the BNB using cell sheet engineering, and we established immortalized cell lines originating from the human BNB. In this article, we review the pathologic evidence of the pathology of DPN in terms of BNB disruption, and we introduce the current in vitro BNB models.


Sign in / Sign up

Export Citation Format

Share Document