Prey diversity effects on ecosystem functioning depend on consumer identity and prey composition

Oecologia ◽  
2017 ◽  
Vol 184 (3) ◽  
pp. 653-661 ◽  
Author(s):  
Daniel Wohlgemuth ◽  
Joanna Filip ◽  
Helmut Hillebrand ◽  
Stefanie D. Moorthi
2021 ◽  
Author(s):  
Vít Latzel ◽  
Javier Puy ◽  
Michael Thieme ◽  
Etienne Bucher ◽  
Lars Götzenberger ◽  
...  

AbstractAn accumulating body of evidence indicates that natural plant populations harbour a large diversity of transposable elements (TEs). TEs provide genetic and epigenetic variation that can substantially translate into changes in plant phenotypes. Despite the wealth of data on the ecological and evolutionary effects of TEs on plant individuals, we have virtually no information on the role of TEs on populations and ecosystem functioning. On the example of Arabidopsis thaliana, we demonstrate that TE-generated variation creates differentiation in ecologically important functional traits. In particular, we show that Arabidopsis populations with increasing diversity of individuals differing in copy numbers of the ONSEN retrotransposon had higher phenotypic and functional diversity. Moreover, increased diversity enhanced population productivity and reduced performance of interspecific competitors. We conclude that TE-generated diversity can have similar effects on ecosystem as usually documented for other biological diversity effects.


2011 ◽  
Vol 68 (8) ◽  
pp. 1495-1506 ◽  
Author(s):  
Welles D. Bretherton ◽  
John S. Kominoski ◽  
Dylan G. Fischer ◽  
Carri J. LeRoy

Marine-derived nutrients from salmon carcasses and leaf litter inputs from riparian vegetation may interactively support stream biodiversity and ecosystem functioning through enhanced resource heterogeneity. Using a full-factorial design of single- and mixed-species litters, we tested for influences of salmon carcasses on in-stream litter decomposition. Overall, nonadditive (synergistic and antagonistic) effects on decomposition were detected for litter species mixtures, and these effects were explained by litter species composition, but not species richness. In middle to late stages of decay, mixtures of labile (high-quality) litters showed faster than expected mass loss, and recalcitrant (low-quality) litter mixtures showed slower than expected mass loss. The presence or absence of each litter species differentially affected decomposition, but these patterns were stronger when salmon carcasses were available. Across all treatments, the influence of salmon carcasses on decomposition was most pronounced in mid-stages of litter decay, where deceleration of decomposition was likely caused by macroinvertebrates feeding on salmon carcasses and less on litter. Combined, these data demonstrate that salmon carcass inputs to streams can enhance detrital heterogeneity, alter interactions among species in litter mixtures, and influence ecosystem functioning (i.e., decomposition).


Author(s):  
Stefan Trogisch ◽  
Xiaojuan Liu ◽  
Gemma Rutten ◽  
Helge Bruelheide

ISRN Ecology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Christopher F. Steiner

Experiments show that consumer diversity can have important effects on the control of prey diversity and abundance. However, theory also indicates that the strength of consumer effects on such properties will vary depending on system productivity and disturbance regime. Using a laboratory-based system composed of ciliate consumers and bacterial prey, I explored the interactive effects of productivity, disturbance, and consumer diversity on prey diversity and trophic-level abundance. Consumer diversity had productivity-dependent effects on bacterial prey that were consistent with theoretical expectations. At low productivity, increasing consumer diversity reduced prey abundance while at high productivity no effects were detected due to compensatory responses among bacteria. In contrast, consumer diversity had weak effects on prey diversity at low productivity but significantly depressed prey diversity at high productivity. Disturbance on consumers enhanced prey diversity but did not alter consumer diversity effects on prey. These results indicate that consumer diversity may play an important role in the regulation of prey communities, but the strength of this effect varies with system productivity.


Ecology ◽  
2012 ◽  
Vol 93 (10) ◽  
pp. 2227-2240 ◽  
Author(s):  
Nico Eisenhauer ◽  
Peter B. Reich ◽  
Forest Isbell

2019 ◽  
Vol 5 ◽  
Author(s):  
Nico Eisenhauer ◽  
Michael Bonkowski ◽  
Ulrich Brose ◽  
Francois Buscot ◽  
Walter Durka ◽  
...  

The functioning and service provisioning of ecosystems in the face of anthropogenic environmental and biodiversity change is a cornerstone of ecological research. The last three decades of biodiversity–ecosystem functioning (BEF) research have provided compelling evidence for the significant positive role of biodiversity in the functioning of many ecosystems. Despite broad consensus of this relationship, the underlying ecological and evolutionary mechanisms have not been well understood. This complicates the transition from a description of patterns to a predictive science. The proposed Research Unit aims at filling this gap of knowledge by applying novel experimental and analytical approaches in one of the longest-running biodiversity experiments in the world: the Jena Experiment. The central aim of the Research Unit is to uncover the mechanisms that determine BEF relationships in the short- and in the long-term. Increasing BEF relationships with time in long-term experiments do not only call for a paradigm shift in the appreciation of the relevance of biodiversity change, they likely are key to understanding the mechanisms of BEF relationships in general. The subprojects of the proposed Research Unit fall into two tightly linked main categories with two research areas each that aim at exploring variation in community assembly processes and resulting differences in biotic interactions as determinants of the long-term BEF relationship. Subprojects under “Microbial community assembly” and “Assembly and functions of animal communities” mostly focus on plant diversity effects on the assembly of communities and their feedback effects on biotic interactions and ecosystem functions. Subprojects under “Mediators of plant-biotic interactions” and “Intraspecific diversity and micro-evolutionary changes” mostly focus on plant diversity effects on plant trait expression and micro-evolutionary adaptation, and subsequent feedback effects on biotic interactions and ecosystem functions. This unification of evolutionary and ecosystem processes requires collaboration across the proposed subprojects in targeted plant and soil history experiments using cutting-edge technology and will produce significant synergies and novel mechanistic insights into BEF relationships. The Research Unit of the Jena Experiment is uniquely positioned in this context by taking an interdisciplinary and integrative approach to capture whole-ecosystem responses to changes in biodiversity and to advance a vibrant research field.


2003 ◽  
Vol 6 (7) ◽  
pp. 637-645 ◽  
Author(s):  
J. Emmett Duffy ◽  
J. Paul Richardson ◽  
Elizabeth A. Canuel

2018 ◽  
Author(s):  
Nathaly R. Guerrero-Ramírez ◽  
Peter B. Reich ◽  
Cameron Wagg ◽  
Marcel Ciobanu ◽  
Nico Eisenhauer

AbstractAlthough diversity-dependent plant-soil feedbacks (PSFs) may contribute significantly to plant diversity effects on ecosystem functioning, the influence of underlying abiotic and biotic mechanistic pathways have been little explored to date. Here, we assessed such pathways with a PSF experiment using soil conditioned for ≥12 years from two grassland biodiversity experiments. Model plant communities differing in diversity were grown in soils conditioned by plant communities with either low- or high-diversity (soil history). Our results reveal that plant diversity can modify plant productivity through both diversity-mediated plant-plant and plant-soil interactions, with the main driver (current plant diversity or soil history) differing with experimental context. The underlying mechanisms of PSFs were explained to a significant extent by both abiotic and biotic pathways (specifically, nematode richness and soil nitrogen availability). Thus, effects of plant diversity loss on ecosystem functioning may persist or even increase over time because of biotic and abiotic soil legacy effects.


Sign in / Sign up

Export Citation Format

Share Document