scholarly journals Diversity-dependent plant-soil feedbacks underlie long-term plant diversity effects on primary productivity

2018 ◽  
Author(s):  
Nathaly R. Guerrero-Ramírez ◽  
Peter B. Reich ◽  
Cameron Wagg ◽  
Marcel Ciobanu ◽  
Nico Eisenhauer

AbstractAlthough diversity-dependent plant-soil feedbacks (PSFs) may contribute significantly to plant diversity effects on ecosystem functioning, the influence of underlying abiotic and biotic mechanistic pathways have been little explored to date. Here, we assessed such pathways with a PSF experiment using soil conditioned for ≥12 years from two grassland biodiversity experiments. Model plant communities differing in diversity were grown in soils conditioned by plant communities with either low- or high-diversity (soil history). Our results reveal that plant diversity can modify plant productivity through both diversity-mediated plant-plant and plant-soil interactions, with the main driver (current plant diversity or soil history) differing with experimental context. The underlying mechanisms of PSFs were explained to a significant extent by both abiotic and biotic pathways (specifically, nematode richness and soil nitrogen availability). Thus, effects of plant diversity loss on ecosystem functioning may persist or even increase over time because of biotic and abiotic soil legacy effects.

2020 ◽  
Author(s):  
Marc W. Schmid ◽  
Sofia J. van Moorsel ◽  
Terhi Hahl ◽  
Enrica De Luca ◽  
Gerlinde B. Deyn ◽  
...  

AbstractPlant and soil microbial diversity are linked through a range of interactions, including the exchange of carbon and nutrients but also herbivory and pathogenic effects. Over time, associations between plant communities and their soil microbiota may strengthen and become more specific, resulting in stronger associations between plant and soil microbial diversity. We tested this hypothesis in a 4-year long field experiment in which we factorially combined plant community history and soil legacy with plant diversity (1, 2, 4, 8, 60 species). Plant community history and soil legacy refer to the presence (“old”) or absence (“new”) of a common history of plants and soils in 52 different plant species compositions during 8 years in a long-term biodiversity experiment in Jena, Germany. After 4 years of growth, we took soil samples in the new field experiment and determined soil bacterial and fungal composition in terms of operational taxonomic units (OTUs) using 16S rRNA gene and ITS DNA sequencing. Plant community history did not affect overall soil community composition but differentially affected bacterial richness and abundances of specific bacteria taxa in association with particular plant species compositions. Soil legacy markedly increased soil bacterial richness and evenness and decreased fungal evenness. Soil fungal richness increased with plant species richness, regardless of plant community history or soil legacy, with the strongest difference between plant monocultures and mixtures. Particular plant species compositions and functional groups were associated with particular bacterial and fungal community compositions. Grasses increased and legumes decreased fungal richness and evenness. Our findings indicate that as experimental ecosystems varying in plant diversity develop over 8 years, plant species associate with specific soil microbial taxa. This can have long-lasting effects on belowground community composition in re-assembled plant communities, as reflected in strong soil legacy signals still visible after 4 years of growing new plant communities. Effects of plant community history on soil communities are subtle and may take longer to fully develop.


Ecosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. e02704 ◽  
Author(s):  
Nathaly R. Guerrero‐Ramírez ◽  
Peter B. Reich ◽  
Cameron Wagg ◽  
Marcel Ciobanu ◽  
Nico Eisenhauer

Ecology ◽  
2012 ◽  
Vol 93 (10) ◽  
pp. 2227-2240 ◽  
Author(s):  
Nico Eisenhauer ◽  
Peter B. Reich ◽  
Forest Isbell

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3688
Author(s):  
Jéssica Fernanda Barazetti ◽  
Tayana Shultz Jucoski ◽  
Tamyres Mingorance Carvalho ◽  
Rafaela Nasser Veiga ◽  
Ana Flávia Kohler ◽  
...  

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality among women. Two thirds of patients are classified as hormone receptor positive, based on expression of estrogen receptor alpha (ERα), the main driver of breast cancer cell proliferation, and/or progesterone receptor, which is regulated by ERα. Despite presenting the best prognosis, these tumors can recur when patients acquire resistance to treatment by aromatase inhibitors or antiestrogen such as tamoxifen (Tam). The mechanisms that are involved in Tam resistance are complex and involve multiple signaling pathways. Recently, roles for microRNAs and lncRNAs in controlling ER expression and/or tamoxifen action have been described, but the underlying mechanisms are still little explored. In this review, we will discuss the current state of knowledge on the roles of microRNAs and lncRNAs in the main mechanisms of tamoxifen resistance in hormone receptor positive breast cancer. In the future, this knowledge can be used to identify patients at a greater risk of relapse due to the expression patterns of ncRNAs that impact response to Tam, in order to guide their treatment more efficiently and possibly to design therapeutic strategies to bypass mechanisms of resistance.


2021 ◽  
Author(s):  
Els Weinans ◽  
Anne Willem Omta ◽  
George A. K. van Voorn ◽  
Egbert H. van Nes

AbstractThe sawtooth-patterned glacial-interglacial cycles in the Earth’s atmospheric temperature are a well-known, though poorly understood phenomenon. Pinpointing the relevant mechanisms behind these cycles will not only provide insights into past climate dynamics, but also help predict possible future responses of the Earth system to changing CO$$_2$$ 2 levels. Previous work on this phenomenon suggests that the most important underlying mechanisms are interactions between marine biological production, ocean circulation, temperature and dust. So far, interaction directions (i.e., what causes what) have remained elusive. In this paper, we apply Convergent Cross-Mapping (CCM) to analyze paleoclimatic and paleoceanographic records to elucidate which mechanisms proposed in the literature play an important role in glacial-interglacial cycles, and to test the directionality of interactions. We find causal links between ocean ventilation, biological productivity, benthic $$\delta ^{18}$$ δ 18 O and dust, consistent with some but not all of the mechanisms proposed in the literature. Most importantly, we find evidence for a potential feedback loop from ocean ventilation to biological productivity to climate back to ocean ventilation. Here, we propose the hypothesis that this feedback loop of connected mechanisms could be the main driver for the glacial-interglacial cycles.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 990
Author(s):  
Javier Pérez-Hernández ◽  
Rosario G. Gavilán

The study of ecological succession to determine how plant communities re-assemble after a natural or anthropogenic disturbance has always been an important topic in ecology. The understanding of these processes forms part of the new theories of community assembly and species coexistence, and is attracting attention in a context of expanding human impacts. Specifically, new successional studies provide answers to different mechanisms of community assemblage, and aim to define the importance of deterministic or stochastic processes in the succession dynamic. Biotic limits, which depend directly on biodiversity (i.e., species competition), and abiotic filtering, which depends on the environment, become particularly important when they are exceeded, making the succession process more complicated to reach the previous disturbance stage. Plant functional traits (PFTs) are used in secondary succession studies to establish differences between abandonment stages or to compare types of vegetation or flora, and are more closely related to the functioning of plant communities. Dispersal limitation is a PFT considered an important process from a stochastic point of view because it is related to the establishing of plants. Related to it the soil seed bank plays an important role in secondary succession because it is essential for ecosystem functioning. Soil compounds and microbial community are important variables to take into account when studying any succession stage. Chronosequence is the best way to study the whole process at different time scales. Finally, our objective in this review is to show how past studies and new insights are being incorporated into the basis of classic succession. To further explore this subject we have chosen old-field recovery as an example of how a number of different plant communities, including annual and perennial grasslands and shrublands, play an important role in secondary succession.


Sign in / Sign up

Export Citation Format

Share Document