Contrasting grain size and componentry in complex proximal deposits of the 1886 Tarawera basaltic Plinian eruption

2007 ◽  
Vol 69 (8) ◽  
pp. 903-926 ◽  
Author(s):  
R. J. Carey ◽  
B. F. Houghton ◽  
J. E. Sable ◽  
C. J. N. Wilson
2012 ◽  
Vol 77 (3) ◽  
pp. 335-343 ◽  
Author(s):  
Joyce Lundberg ◽  
Donald A. McFarlane

A distinctive white sediment in the caves of Mulu, Sarawak, Borneo is a well-preserved tephra, representing a fluvially transported surface air-fall deposit, re-deposited inside the caves. We show that the tephra is not the Younger Toba Tephra, formerly considered as most likely. The shards are rod-shaped with elongate tubular vesicles; the largest grains ~ 170 μm in length; of rhyolitic composition; and 87Sr/86Sr ratio of 0.70426 ± 0.00001. U–Th dating of associated calcites suggest that the tephra was deposited before 125 ± 4 ka, and probably before 156 ± 2 ka. Grain size and distance from closest potential source suggests an eruption of VEI 7. Prevailing winds, grain size, thickness of deposit, location of potential sources, and Sr isotopic ratio limit the source to the Philippines. Comparisons with the literature give the best match geochemically with layer 1822 from Ku et al. (2009a), dated by ocean core stratigraphy to 189 ka. This tephra represents a rare terrestrial repository indicating a very substantial Plinian/Ultra-Plinian eruption that covered the Mulu region of Borneo with ash, a region that rarely receives tephra from even the largest known eruptions in the vicinity. It likely will be a valuable chronostratigraphic marker for sedimentary, palaeontological and archaeological studies.


Author(s):  
Heidi Wehrmann ◽  
Costanza Bonadonna ◽  
Armin Freundt ◽  
Bruce F. Houghton ◽  
Steffen Kutterolf

2008 ◽  
Vol 71 (3) ◽  
pp. 337-355 ◽  
Author(s):  
L. Costantini ◽  
C. Bonadonna ◽  
B. F. Houghton ◽  
H. Wehrmann

2016 ◽  
Vol 78 (2) ◽  
Author(s):  
Jenny Schauroth ◽  
Fabian B. Wadsworth ◽  
Ben Kennedy ◽  
Felix W. von Aulock ◽  
Yan Lavallée ◽  
...  

The 1875 explosive eruption of Askja, Iceland was part of a series of regional volcanic and tectonic events which took place in the northern rift zone in 1874 and 1875. These events were marked by regional seismicity, graben formation and a basaltic fissure eruption at Sveinagja, and the plinian eruption of Askja on 28-29 March. Crustal rifting caused basaltic magma to be mixed with rhyolitic magma, triggering the plinian eruption. A caldera, Oskjuvatn, was formed in Askja measuring 3 x 4 km and 267 m deep. Six distinguishable pyroclastic layers can be recognized. The main eruption began with a small sub-plinian pumice eruption forming layer B. The next phase produced a fine-grained, poorly sorted pumice and ash deposit with well developed stratification (layer C), which contains base surge beds near source and is interpreted as phreatomagmatic in origin. The main plinian phase of the eruption lasted 6 h and formed a coarse-grained, poorly bedded pumice-fall deposit (layer D) which contains 75% of the total ejecta. Late-stage explosions formed a layer of lithic clasts (layer E). Isopach and grain-size isopleth maps show that the vents migrated from south to north along a line 1.5 km long in the area now occupied by Oskjuvatn. The intensity and column height of the eruption increased with time as shown by reverse grading and an increasing dispersal index in successive layers. Most of the ejecta is composed of white rhyolitic pumice and ash. Lithics consist of rhyolitic obsidian, partially fused trondhjeimite, and basalt fragments: layer D contains 2.1 mass % lithics. All layers contain abundant grey pumice clasts consisting of intimate mixtures of dark brown basaltic and brown rhyolitic glasses. The mass percentage of mixed pumice in layer D is 4.7, of which 40 % is basaltic glass. These mixed pumice clasts are concentrated at distances of 30-80 km in layer D by aeolian sorting. A grey, crystal-rich, andesitic pumice occurs as inclusions in the white pumice. Layer D shows a systematic decrease in median grain diameter, but no change in cr^ with distance from source. Layer C shows no change in median grain diameter, but a decrease in with distance from source. Phreatomagmatic deposits such as layer C can be readily distinguished from plinian deposits on a Md$ against cr^ diagram, on a against a* (skewness) diagram and on the F against D plot of Walker (1973). The downwind, coarse-tail grading in layer C is attributed to fall-out of fine ash as clumps and aggregates. The total grain-size distributions of both layers D and C show bimodality. In layer D a minor mode in the ash size classes reflects secondary processes of fragmentation by collisions in the vent and column, whereas the major mode is due to disruption of magma by expanding gases. In layer C the fine mode is dominant and represents extensive fragmentation by explosive interaction with water. Field and grain-size studies of layer D show that impact breakage is of major importance near source.


2020 ◽  
Vol 392 ◽  
pp. 106761 ◽  
Author(s):  
Emily C. Bamber ◽  
Fabio Arzilli ◽  
Margherita Polacci ◽  
Margaret E. Hartley ◽  
Jonathan Fellowes ◽  
...  

Author(s):  
K. P. Staudhammer ◽  
L. E. Murr

The effect of shock loading on a variety of steels has been reviewed recently by Leslie. It is generally observed that significant changes in microstructure and microhardness are produced by explosive shock deformation. While the effect of shock loading on austenitic, ferritic, martensitic, and pearlitic structures has been investigated, there have been no systematic studies of the shock-loading of microduplex structures.In the current investigation, the shock-loading response of millrolled and heat-treated Uniloy 326 (thickness 60 mil) having a residual grain size of 1 to 2μ before shock loading was studied. Uniloy 326 is a two phase (microduplex) alloy consisting of 30% austenite (γ) in a ferrite (α) matrix; with the composition.3% Ti, 1% Mn, .6% Si,.05% C, 6% Ni, 26% Cr, balance Fe.


Sign in / Sign up

Export Citation Format

Share Document