fall deposit
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Elliot Swallow

<p>Silicic (i.e. dacitic-rhyolitic) magmatic systems have the potential to generate large, explosive caldera-forming eruptions which have global effects and consequences. How, and over what timescale, magma accumulates and is stored in the upper crust are key aspects in understanding such systems and their associated hazards. The absence of such eruptions in the historical record, however, has forced understanding of these systems to be developed through numerical models or the study of the deposits in the geological record. Numerical models primarily focus on the long-term generation but instantaneous eruption of single magma (i.e. melt-dominant) bodies. In contrast, the stratigraphic and geochemical nature of eruption deposits often show features more consistent with complex magmatic systems comprising multiple melt-dominant bodies that may have formed rapidly but erupted episodically. Further studies of past eruption deposits are valuable, therefore, in reconstructing silicic magmatic systems and highlighting the nature of melt-dominant body generation and storage.  To this end, this thesis examines the 2.08 Ma, ∼2,500 km³ Huckleberry Ridge Tuff (HRT), Yellowstone Plateau volcanic field (YPVF), U.S.A, the deposit of the first and largest of three caldera-forming eruptions in the YPVF. The HRT comprises an initial fall deposit followed by three ignimbrite members (A, B and C) with a second fall deposit between members B and C. Despite emanating from an archetypal silicic volcanic field, minimal previous work has been undertaken on the geochemical nature of the HRT but it is thought to conform to traditional, unitary magma body ideas. A revised stratigraphic framework, detailing an episodic and prolonged initial fall deposit, identification of a weeks-months time gap between members A and B, and a similar but longer years-decades hiatus in activity between members B and C provides the context for this geochemical investigation. A large sample suite representative of the diverse range of physical characteristics of clasts and material found in the HRT was analysed. In situ micro-analysis of matrix glass (major and trace elements) and crystals (major elements) in the initial fall deposit are coupled with major and trace element, and isotopic compositions of single silicic clasts (i.e. pumice/fiamme) from all three ignimbrite members, supplemented by in situ analysis of their crystals and groundmass glass. These data are used to reconstruct the silicic magmatic system. Furthermore, major and trace element, andisotopic compositions of rare mafic (i.e. basaltic to andesitic) material found in members A and B provide an insight into the thermal and chemical drivers of HRT silicic volcanism.  This macro- and micro-analytical investigation using multiple techniques reveals remarkable complexity within the large-scale HRT magmatic complex. Four geochemically distinct magmatic systems are differentiated on single clast elemental and isotopic characteristics that are further reflected in crystal and glass compositions. Two of these systems (1 and 2) were active in the initial fall deposit and member A. Magmatic system 1 is volumetrically dominant in the HRT and is characterised by moderate-high Ba single clast (450-3540 ppm) and glass (100-3360 ppm) compositions, in contrast to the distinctly low-Ba (≤250 ppm single clast, <65 ppm glass Ba contents) magmatic system 2. Both these magmatic systems exhibit clustered glass compositions, indicating multiple, laterally-adjacent melt-dominant bodies were present, and shared moderate isotopic compositions (e.g. ⁸⁷Sr/⁸⁶SrAC = 0.70950-0.71191) are explicable by a multi-stage partial melting-fractional crystallisation petrogenesis. The time break between members A and B is associated with mixing and mingling within magmatic system 1, related to a renewed influx of mafic material, and a cessation of activity of system 2, which is absent from member B. The time break between members B and C reflects significant changes within the magmatic complex. Magmatic system 2 is rejuvenated and melt-dominant bodies associated with two new magmatic systems (3 and 4) are formed, with at least system 3 comprising multiple bodies. These latter two magmatic systems strongly differ in their elemental characteristics (system 3: high SiO₂ [75-78 wt% SiO₂]; system 4: dacite-rhyolite [66-75 wt% SiO₂]). Despite this, they have similar and highly radiogenic (e.g. ⁸⁷Sr/⁸⁶SrAC = 0.72462-0.72962) isotopic compositions indicating shared extensive incorporation of Archean crust. They also contrast in their relation to mafic compositions, with system 4 associated with olivine tholeiitic compositions erupted prior to and following the HRT in the YPVF. In contrast, system 3, like systems 1 and 2, is associated with high-Ba, high-Zr mafic compositions found co-erupted in HRT members A and B. These compositions are similar to lava flows erupted further west at the Craters of the Moon field, and are interpreted as representing partial melts from regions in the lithospheric mantle enriched by high-T, P fluids emanating from the subducted Farallon slab.  Overall, the HRT magmatic complex was remarkably heterogeneous. Two contemporaneous mafic root zones drove four silicic magmatic systems, episodically active throughout the eruption. At least three of these systems comprised multiple laterally-adjacent melt-dominant bodies. Intra-eruption time breaks are associated with broad-scale reorganisation of the magmatic complex. This complexity highlights the utility of a detailed, systematic, multi-technique geochemical investigation, within a stratigraphic framework, of the deposits of large silicic caldera-forming eruptions, and breaks new ground in the understanding of such systems.</p>


2021 ◽  
Author(s):  
◽  
Elliot Swallow

<p>Silicic (i.e. dacitic-rhyolitic) magmatic systems have the potential to generate large, explosive caldera-forming eruptions which have global effects and consequences. How, and over what timescale, magma accumulates and is stored in the upper crust are key aspects in understanding such systems and their associated hazards. The absence of such eruptions in the historical record, however, has forced understanding of these systems to be developed through numerical models or the study of the deposits in the geological record. Numerical models primarily focus on the long-term generation but instantaneous eruption of single magma (i.e. melt-dominant) bodies. In contrast, the stratigraphic and geochemical nature of eruption deposits often show features more consistent with complex magmatic systems comprising multiple melt-dominant bodies that may have formed rapidly but erupted episodically. Further studies of past eruption deposits are valuable, therefore, in reconstructing silicic magmatic systems and highlighting the nature of melt-dominant body generation and storage.  To this end, this thesis examines the 2.08 Ma, ∼2,500 km³ Huckleberry Ridge Tuff (HRT), Yellowstone Plateau volcanic field (YPVF), U.S.A, the deposit of the first and largest of three caldera-forming eruptions in the YPVF. The HRT comprises an initial fall deposit followed by three ignimbrite members (A, B and C) with a second fall deposit between members B and C. Despite emanating from an archetypal silicic volcanic field, minimal previous work has been undertaken on the geochemical nature of the HRT but it is thought to conform to traditional, unitary magma body ideas. A revised stratigraphic framework, detailing an episodic and prolonged initial fall deposit, identification of a weeks-months time gap between members A and B, and a similar but longer years-decades hiatus in activity between members B and C provides the context for this geochemical investigation. A large sample suite representative of the diverse range of physical characteristics of clasts and material found in the HRT was analysed. In situ micro-analysis of matrix glass (major and trace elements) and crystals (major elements) in the initial fall deposit are coupled with major and trace element, and isotopic compositions of single silicic clasts (i.e. pumice/fiamme) from all three ignimbrite members, supplemented by in situ analysis of their crystals and groundmass glass. These data are used to reconstruct the silicic magmatic system. Furthermore, major and trace element, andisotopic compositions of rare mafic (i.e. basaltic to andesitic) material found in members A and B provide an insight into the thermal and chemical drivers of HRT silicic volcanism.  This macro- and micro-analytical investigation using multiple techniques reveals remarkable complexity within the large-scale HRT magmatic complex. Four geochemically distinct magmatic systems are differentiated on single clast elemental and isotopic characteristics that are further reflected in crystal and glass compositions. Two of these systems (1 and 2) were active in the initial fall deposit and member A. Magmatic system 1 is volumetrically dominant in the HRT and is characterised by moderate-high Ba single clast (450-3540 ppm) and glass (100-3360 ppm) compositions, in contrast to the distinctly low-Ba (≤250 ppm single clast, <65 ppm glass Ba contents) magmatic system 2. Both these magmatic systems exhibit clustered glass compositions, indicating multiple, laterally-adjacent melt-dominant bodies were present, and shared moderate isotopic compositions (e.g. ⁸⁷Sr/⁸⁶SrAC = 0.70950-0.71191) are explicable by a multi-stage partial melting-fractional crystallisation petrogenesis. The time break between members A and B is associated with mixing and mingling within magmatic system 1, related to a renewed influx of mafic material, and a cessation of activity of system 2, which is absent from member B. The time break between members B and C reflects significant changes within the magmatic complex. Magmatic system 2 is rejuvenated and melt-dominant bodies associated with two new magmatic systems (3 and 4) are formed, with at least system 3 comprising multiple bodies. These latter two magmatic systems strongly differ in their elemental characteristics (system 3: high SiO₂ [75-78 wt% SiO₂]; system 4: dacite-rhyolite [66-75 wt% SiO₂]). Despite this, they have similar and highly radiogenic (e.g. ⁸⁷Sr/⁸⁶SrAC = 0.72462-0.72962) isotopic compositions indicating shared extensive incorporation of Archean crust. They also contrast in their relation to mafic compositions, with system 4 associated with olivine tholeiitic compositions erupted prior to and following the HRT in the YPVF. In contrast, system 3, like systems 1 and 2, is associated with high-Ba, high-Zr mafic compositions found co-erupted in HRT members A and B. These compositions are similar to lava flows erupted further west at the Craters of the Moon field, and are interpreted as representing partial melts from regions in the lithospheric mantle enriched by high-T, P fluids emanating from the subducted Farallon slab.  Overall, the HRT magmatic complex was remarkably heterogeneous. Two contemporaneous mafic root zones drove four silicic magmatic systems, episodically active throughout the eruption. At least three of these systems comprised multiple laterally-adjacent melt-dominant bodies. Intra-eruption time breaks are associated with broad-scale reorganisation of the magmatic complex. This complexity highlights the utility of a detailed, systematic, multi-technique geochemical investigation, within a stratigraphic framework, of the deposits of large silicic caldera-forming eruptions, and breaks new ground in the understanding of such systems.</p>


Volcanica ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 257-277
Author(s):  
Jonathan Castro ◽  
Sebastian Walter

Eruptive dynamics of the 1060 CE rhyolitic eruption of Big Glass Mountain (BGM), USA, are investigated with field observations, hydrogen isotope and H2O content analysis of pyroclastic obsidian chips and lavas. Field relations at BGM reveal evidence for hybrid eruption, defined as synchronous explosive venting and effusive emplacement of vast obsidian lava flows.  This activity is particularly well manifested by extensive breccia zones implanted within the BGM obsidian lavas, which may represent rafted tephra cones, in addition to remnants of airfall tephra on the lava. Rhyolitic obsidians collected from a 2.5-m-thick fall deposit and co-eruptive lava flow were studied by FTIR and TCEA methods to elucidate the eruption’s degassing history.  The data, along with VolcDeGas program simulations, demonstrate a correlation between H2O content and H-isotopic composition (δD) that likely reflects ever-increasing amounts of volatile loss via repetitive close-system steps, best described as batched degassing.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Nobuko Kametani ◽  
Yasuo Ishizaki ◽  
Mitsuhiro Yoshimoto ◽  
Fukashi Maeno ◽  
Akihiko Terada ◽  
...  

AbstractOn January 23, 2018, a small phreatic eruption (VEI = 1) occurred at the Motoshirane Pyroclastic Cone Group in the southern part of Kusatsu-Shirane Volcano in central Japan. The eruption ejected ash, lapillus, and volcanic blocks from three newly opened craters: the main crater (MC), west crater (WC), and south crater (SC). Volcanic blocks were deposited up to 0.5 km from each crater. In contrast, the ash released during this eruption fell up to 25 km ENE of the volcano. The total mass of the fall deposit generated by the eruption was estimated using two methods, yielding total masses of 3.4 × 104 t (segment integration method) and 2.4 × 104 t (Weibull fitting method). The calculations indicate that approximately 70% of the fall deposit was located within 0.5 km of the craters, which was mainly attributed to the low height of the eruption plume.


2021 ◽  
Vol 143 ◽  
pp. 106588
Author(s):  
Kiyonobu Kasama ◽  
Zentaro Furukawa ◽  
Noriyuki Yasufuku

2021 ◽  
Vol 72 (1) ◽  
Author(s):  
Mátyás Hencz ◽  
Tamás Biró ◽  
Zoltán Cseri ◽  
Dávid Karátson ◽  
Emő Márton ◽  
...  

2020 ◽  
Author(s):  
Rachel M. Rappoccio ◽  
◽  
Elizabeth A. Johnson ◽  
Madison Myers ◽  
Paul Wallace ◽  
...  
Keyword(s):  

2019 ◽  
Vol 14 (5) ◽  
pp. 798-809 ◽  
Author(s):  
Masato Iguchi ◽  
Haruhisa Nakamichi ◽  
Hiroshi Tanaka ◽  
Yusaku Ohta ◽  
Atsushi Shimizu ◽  
...  

The Sakurajima volcano is characterized by frequent vulcanian eruptions at the Minamidake or Showa crater in the summit area. We installed an integrated monitoring system for the detection of volcanic ash (composed of remote sensing sensors XMP radars, lidar, and GNSS with different wave lengths) and 13 optical disdrometers on the ground covering all directions from the crater to measure drop size distribution and falling velocity. Campaign sampling of volcanic ash supports the conversion of particle counts measured by the disdrometer to the weight of volcanic ash. Seismometers and tilt/strain sensors were used to estimate the discharge rate of volcanic ash from the vents. XMP radar can detect volcanic ash clouds even under visual difficulty because of weather such as fog or clouds. A vulcanian eruption on November 13 was the largest event at the Sakurajima volcano in 2017; however, the volcanic plume was not visible due to clouds covering the summit. Radar revealed that the volcanic plume reached an elevation of 4.2–6.2 km. Post-fit phase residuals (PPR) from the GNSS analysis increased suddenly after the eruption, and large-PPR paths from the satellites to the ground-based receivers intersected each other at an elevation of 4.2 km. The height of the volcanic plume was also estimated from the discharge rate of volcanic ash to be 4.5 km, which is empirically related to seismic energy and the deflation volume obtained via ground deformation monitoring. Using the PUFF model, the weight of the ash-fall deposit was accurately forecast in the main direction of transport of the volcanic ash, which was verified by disdrometers. For further advances in forecasting of the ash-fall deposit, we must consider high-resolution wind field, shape of volcanic plume as the initial value, and the particle number distribution along the volcanic plume.


Sign in / Sign up

Export Citation Format

Share Document