Inconsistent relationships between tree ring width and normalized difference vegetation index in montane evergreen coniferous forests in arid regions

Trees ◽  
2021 ◽  
Author(s):  
Yan Wen ◽  
Yuan Jiang ◽  
Liang Jiao ◽  
Caixia Hou ◽  
Hui Xu
Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 241
Author(s):  
Ruoshi Liu ◽  
Yi Song ◽  
Yu Liu ◽  
Xuxiang Li ◽  
Huiming Song ◽  
...  

Vegetation coverage is very important in terrestrial ecosystems and climate systems. However, the observational record of the normalized difference vegetation index (NDVI), which started in the 1980s when satellites became widely used, is too short to investigate the history of variation in vegetation coverage beyond the modern observation period. Here, we present a 189 y vegetation coverage series based on a total of 349 Mongolian pine (Pinus sylvestris var. mongolica Litv) cores from seven locations from the central–western Da Hinggan Mountains (CW–DHM), northeastern China. We found a significant relationship between tree-ring width and the regional cumulative normalized difference vegetation index (CNDVI). The correlation between the ring-width chronology and the regional June–July CNDVI (CNDVIJJ) was significant, with r = 0.68 (n = 32, p < 0.001) and an explained variance of 45.8% (44.0% after the adjustment for the loss of the degree of freedom). On this basis, we designed a transfer function to reconstruct the CNDVIJJ for the CW–DHM region from 1825 to 2013 CE (Common Era). During the last 189 years, there were 28 years with high CNDVIJJ values, and another 28 years with low values. We also observed CNDVIJJ fluctuations at the inter-annual and decadal time scales, including eight low value periods and nine high value periods. Based on our analysis, the variation in CNDVI is associated with climatic factors, such as temperature, precipitation and the Palmer Drought Severity Index (PDSI), which combines both temperature and precipitation. From 1950 to 2002 CE, the CNDVI showed a noticeable decreasing trend in the CW–DHM region, whereas after 2003 CE, the CNDVI exhibited an apparent increase, which has also been observed in southern Central Siberia, eastern Mongolia and northeastern and eastern China, indicating that the CNDVI change in the CW–DHM is related to climate change in the local region and in some parts of Asia.


2008 ◽  
Vol 12 (14) ◽  
pp. 1-14 ◽  
Author(s):  
R. K. Kaufmann ◽  
R. D. D’Arrigo ◽  
L. F. Paletta ◽  
H. Q. Tian ◽  
W. Matt Jolly ◽  
...  

Abstract The authors examine the effects of latitude and life history on the timing of relationships between satellite measures of normalized difference vegetation index (NDVI) and ground-based measures of tree-ring width in forests at mid- and high latitudes in the Northern Hemisphere. Results indicate a correlation between NDVI and tree rings over the entire growing season for all areas analyzed. For sites south of 40°N, a correlation appears in early spring and late fall while a correlation appears during summer months north of 40°N. For conifers, the correlation appears in summer while deciduous trees show the relationship during early spring and late fall. Of these two correlations, the effect of life history seems to dominate the effect of latitude. The timing of these correlations may help clarify the relationship between climate and tree rings and the effect of canopy duration on carbon uptake by trees.


2019 ◽  
Vol 11 (20) ◽  
pp. 2344 ◽  
Author(s):  
Peipei Xu ◽  
Wei Fang ◽  
Tao Zhou ◽  
Xiang Zhao ◽  
Hui Luo ◽  
...  

We have integrated the observational capability of satellite remote sensing with plot-scale tree-ring data to upscale the evaluation of forest responses to drought. Satellite data, such as the normalized difference vegetation index (NDVI), can provide a spatially continuous measure with limited temporal coverage, while tree-ring width index (RWI) provides an accurate assessment with a much longer time series at local scales. Here, we explored the relationship between RWI and NDVI of three dominant species in the Southwestern United States (SWUS) and predicted RWI spatial distribution from 2001 to 2017 based on Moderate Resolution Imaging Spectroradiometer (MODIS) 1-km resolution NDVI data with stringent quality control. We detected the optimum time windows (around June–August) during which the RWI and NDVI were most closely correlated for each species, when the canopy growth had the greatest effect on growth of tree trunks. Then, using our upscaling algorithm of NDVI-based RWI, we were able to detect the significant impact of droughts in 2002 and in 2011–2014, which supported the validity of this algorithm in quantifying forest response to drought on a large scale.


2021 ◽  
Vol 303 ◽  
pp. 108394
Author(s):  
Nathsuda Pumijumnong ◽  
Piyarat Songtrirat ◽  
Supaporn Buajan ◽  
Sineenart Preechamart ◽  
Uthai Chareonwong ◽  
...  

2010 ◽  
Vol 29 (17-18) ◽  
pp. 2111-2122 ◽  
Author(s):  
X. Shao ◽  
Y. Xu ◽  
Z.-Y. Yin ◽  
E. Liang ◽  
H. Zhu ◽  
...  

2017 ◽  
Vol 41 (4) ◽  
pp. 478-495 ◽  
Author(s):  
UK Thapa ◽  
S St. George ◽  
DK Kharal ◽  
NP Gaire

The climate of Nepal has changed rapidly over the recent decades, but most instrumental records of weather and hydrology only extend back to the 1980s. Tree rings can provide a longer perspective on recent environmental changes, and since the early 2000s, a new round of field initiatives by international researchers and Nepali scientists have more than doubled the size of the country’s tree-ring network. In this paper, we present a comprehensive analysis of the current tree-ring width network for Nepal, and use this network to estimate changes in forest growth nation-wide during the last four centuries. Ring-width chronologies in Nepal have been developed from 11 tree species, and half of the records span at least 290 years. The Nepal tree-ring width network provides a robust estimate of annual forest growth over roughly the last four centuries, but prior to this point, our mean ring-width composite fluctuates wildly due to low sample replication. Over the last four centuries, two major events are prominent in the all-Nepal composite: (i) a prolonged and widespread growth suppression during the early 1800s; and (ii) heightened growth during the most recent decade. The early 19th century decline in tree growth coincides with two major Indonesian eruptions, and suggests that short-term disturbances related to climate extremes can exert a lasting influence on the vigor of Nepal’s forests. Growth increases since AD 2000 are mainly apparent in high-elevation fir, which may be a consequence of the observed trend towards warmer temperatures, particularly during winter. This synthesis effort should be useful to establish baselines for tree-ring data in Nepal and provide a broader context to evaluate the sensitivity or behavior of this proxy in the central Himalayas.


The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Jeroen DM Schreel

Over the last few decades – at a range of northern sites – changes in tree-ring width and latewood density have not followed mean summertime temperature fluctuations. This discrepancy sharply contrasts an earlier correlation between those variables. As the origin of this inconsistency has not been fully deciphered, questions have emerged regarding the use of tree-ring width and latewood density as a proxy in dendrochronological climate reconstructions. I suggest that temperature is no longer the most limiting factor in certain boreal areas, which might explain the observed divergence.


Sign in / Sign up

Export Citation Format

Share Document