Spatio-temporal connections in streamflow: a complex networks-based approach

Author(s):  
Nazly Yasmin ◽  
Bellie Sivakumar
2010 ◽  
Vol 20 (06) ◽  
pp. 1653-1675 ◽  
Author(s):  
MEHMET K. MUEZZINOGLU ◽  
IRMA TRISTAN ◽  
RAMON HUERTA ◽  
VALENTIN S. AFRAIMOVICH ◽  
MIKHAIL I. RABINOVICH

Understanding and predicting the behavior of complex multiagent systems like brain or ecological food net requires new approaches and paradigms. Traditional analyses based on just asymptotic results of behavior as time goes to infinity, or on straightforward mathematical images that can accommodate only fixed points or limit cycles do not tell much about these systems. To obtain sensible dynamical models of natural phenomena, such as the reproducible order observed in ecological, cognitive or behavioral experiments, one cannot afford to neglect the transient dynamics of the underlying complex network. In disclosing such dynamical mechanisms, the focus of interest must be on reproducible or, even, structurally stable transients. In this tutorial, we formulate the Winnerless Competition (WLC) principle that induces robust transient dynamics in open complex networks. The main point of WLC principle is the transformation of the acquired information into ensemble (spatio)-temporal output via intrinsic transient dynamics of the network. Such encoding provides a reproducible transient response, whose geometrical image in phase space is a stable heteroclinic sequence. We compile a diverse list of natural phenomena which can be rigorously modeled by the WLC. Together with the experimental and numerical results of the networks with different levels of complexity, we evaluate the robustness and reproducibility of the WLC dynamics and discuss the advantages of future possible application of the discussed approach.


2021 ◽  
Vol 15 ◽  
Author(s):  
Valentina Lanza ◽  
Jacopo Secco ◽  
Fernando Corinto

Multistability phenomena and complex nonlinear dynamics in memristor oscillators pave the way to obtain efficient solutions to optimization problems by means of novel computational architectures based on the interconnection of single–device oscillators. It is well-known that topological properties of interconnections permit to control synchronization and spatio–temporal patterns in oscillatory networks. When the interconnections can change in time with a given probability to connect two oscillators, the whole network acts as a complex network with blinking couplings. The work of has shown that a particular class of blinking complex networks are able to completely synchronize in a faster fashion with respect to other coupling strategies. This work focuses on the specific class of blinking complex networks made of Memristor–based Oscillatory Circuits (MOCs). By exploiting the recent Flux–Charge Analysis Method, we make clear that synchronization phenomena in blinking networks of memristor oscillators having stochastic couplings, i.e., Blinking Memristor Oscillatory Networks (BMONs), correspond to global periodic oscillations on invariant manifolds and the effect of a blinking link is to shift the nonlinear dynamics through the infinite (invariant) manifolds. Numerical simulations performed on MOCs prove that synchronization phenomena can be controlled just by changing the coupling amongst them.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Leilei Kang ◽  
Guojing Hu ◽  
Hao Huang ◽  
Weike Lu ◽  
Lan Liu

In order to improve the accuracy of short-term travel time prediction in an urban road network, a hybrid model for spatio-temporal feature extraction and prediction of urban road network travel time is proposed in this research, which combines empirical dynamic modeling (EDM) and complex networks (CN) with an XGBoost prediction model. Due to the highly nonlinear and dynamic nature of travel time series, it is necessary to consider time dependence and the spatial reliance of travel time series for predicting the travel time of road networks. The dynamic feature of the travel time series can be revealed by the EDM method, a nonlinear approach based on Chaos theory. Further, the spatial characteristic of urban traffic topology can be reflected from the perspective of complex networks. To fully guarantee the reasonability and validity of spatio-temporal features, which are dug by empirical dynamic modeling and complex networks (EDMCN), for urban traffic travel time prediction, an XGBoost prediction model is established for those characteristics. Through the in-depth exploration of the travel time and topology of a particular road network in Guiyang, the EDMCN-XGBoost prediction model’s performance is verified. The results show that, compared with the single XGBoost, autoregressive moving average, artificial neural network, support vector machine, and other models, the proposed EDMCN-XGBoost prediction model presents a better performance in forecasting.


2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


2019 ◽  
Vol 47 (6) ◽  
pp. 1733-1747 ◽  
Author(s):  
Christina Klausen ◽  
Fabian Kaiser ◽  
Birthe Stüven ◽  
Jan N. Hansen ◽  
Dagmar Wachten

The second messenger 3′,5′-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.


Sign in / Sign up

Export Citation Format

Share Document