Performance prediction of roadheaders using ensemble machine learning techniques

2017 ◽  
Vol 31 (4) ◽  
pp. 1103-1116 ◽  
Author(s):  
Sadi Evren Seker ◽  
Ibrahim Ocak
Webology ◽  
2021 ◽  
Vol 18 (Special Issue 01) ◽  
pp. 183-195
Author(s):  
Thingbaijam Lenin ◽  
N. Chandrasekaran

Student’s academic performance is one of the most important parameters for evaluating the standard of any institute. It has become a paramount importance for any institute to identify the student at risk of underperforming or failing or even drop out from the course. Machine Learning techniques may be used to develop a model for predicting student’s performance as early as at the time of admission. The task however is challenging as the educational data required to explore for modelling are usually imbalanced. We explore ensemble machine learning techniques namely bagging algorithm like random forest (rf) and boosting algorithms like adaptive boosting (adaboost), stochastic gradient boosting (gbm), extreme gradient boosting (xgbTree) in an attempt to develop a model for predicting the student’s performance of a private university at Meghalaya using three categories of data namely demographic, prior academic record, personality. The collected data are found to be highly imbalanced and also consists of missing values. We employ k-nearest neighbor (knn) data imputation technique to tackle the missing values. The models are developed on the imputed data with 10 fold cross validation technique and are evaluated using precision, specificity, recall, kappa metrics. As the data are imbalanced, we avoid using accuracy as the metrics of evaluating the model and instead use balanced accuracy and F-score. We compare the ensemble technique with single classifier C4.5. The best result is provided by random forest and adaboost with F-score of 66.67%, balanced accuracy of 75%, and accuracy of 96.94%.


2021 ◽  
Author(s):  
Bharat Kaushik ◽  
Pratap Daphal ◽  
Pratyush Khare ◽  
Sivaprasad Koralla ◽  
Satadru Bera

Inventions ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 57
Author(s):  
Attique Ur Rehman ◽  
Tek Tjing Lie ◽  
Brice Vallès ◽  
Shafiqur Rahman Tito

The recent advancement in computational capabilities and deployment of smart meters have caused non-intrusive load monitoring to revive itself as one of the promising techniques of energy monitoring. Toward effective energy monitoring, this paper presents a non-invasive load inference approach assisted by feature selection and ensemble machine learning techniques. For evaluation and validation purposes of the proposed approach, one of the major residential load elements having solid potential toward energy efficiency applications, i.e., water heating, is considered. Moreover, to realize the real-life deployment, digital simulations are carried out on low-sampling real-world load measurements: New Zealand GREEN Grid Database. For said purposes, MATLAB and Python (Scikit-Learn) are used as simulation tools. The employed learning models, i.e., standalone and ensemble, are trained on a single household’s load data and later tested rigorously on a set of diverse households’ load data, to validate the generalization capability of the employed models. This paper presents a comprehensive performance evaluation of the presented approach in the context of event detection, feature selection, and learning models. Based on the presented study and corresponding analysis of the results, it is concluded that the proposed approach generalizes well to the unseen testing data and yields promising results in terms of non-invasive load inference.


Author(s):  
Joy Iong-Zong Chen ◽  
Kong-Long Lai

The design of an analogue IC layout is a time-consuming and manual process. Despite several studies in the sector, some geometric restrictions have resulted in disadvantages in the process of automated analogue IC layout design. As a result, analogue design has a performance lag when compared to manual design. This prevents the deployment of a large range of automated tools. With the recent technical developments, this challenge is resolved using machine learning techniques. This study investigates performance-driven placement in the VLSI IC design process, as well as analogue IC performance prediction by utilizing various machine learning approaches. Further, several amplifier designs are simulated. From the simulation results, it is evident that, when compared to the manual layout, an improved performance is obtained by using the proposed approach.


Author(s):  
Jitendra Kumar Rai ◽  
Atul Negi ◽  
Rajeev Wankar

Sharing of resources by the cores of multi-core processors brings performance issues for the system. Majority of the shared resources belong to memory hierarchy sub-system of the processors such as last level caches, prefetchers and memory buses. Programs co-running on the cores of a multi-core processor may interfere with each other due to usage of such shared resources. Such interference causes co-running programs to suffer with performance degradation. Previous research works include efforts to characterize and classify the memory behaviors of programs to predict the performance. Such knowledge could be useful to create workloads to perform performance studies on multi-core processors. It could also be utilized to form policies at system level to mitigate the interference between co-running programs due to use of shared resources. In this work, machine learning techniques are used to predict the performance on multi-core processors. The main contribution of the study is enumeration of solo-run program attributes, which can be used to predict concurrent-run performance despite change in the number of co-running programs sharing the resources. The concurrent-run involves the interference between co-running programs due to use of shared resources.


Sign in / Sign up

Export Citation Format

Share Document