scholarly journals Real-time diameter of the fetal aorta from ultrasound

2019 ◽  
Vol 32 (11) ◽  
pp. 6735-6744
Author(s):  
Nicoló Savioli ◽  
Enrico Grisan ◽  
Silvia Visentin ◽  
Erich Cosmi ◽  
Giovanni Montana ◽  
...  

AbstractThe automatic analysis of ultrasound sequences can substantially improve the efficiency of clinical diagnosis. This article presents an attempt to automate the challenging task of measuring the vascular diameter of the fetal abdominal aorta from ultrasound images. We propose a neural network architecture consisting of three blocks: a convolutional neural network (CNN) for the extraction of imaging features, a convolution gated recurrent unit (C-GRU) for exploiting the temporal redundancy of the signal, and a regularized loss function, called CyclicLoss, to impose our prior knowledge about the periodicity of the observed signal. The solution is investigated with a cohort of 25 ultrasound sequences acquired during the third-trimester pregnancy check, and with 1000 synthetic sequences. In the extraction of features, it is shown that a shallow CNN outperforms two other deep CNNs with both the real and synthetic cohorts, suggesting that echocardiographic features are optimally captured by a reduced number of CNN layers. The proposed architecture, working with the shallow CNN, reaches an accuracy substantially superior to previously reported methods, providing an average reduction of the mean squared error from 0.31 (state-of-the-art) to 0.09 $$\mathrm{mm}^2$$mm2, and a relative error reduction from 8.1 to 5.3%. The mean execution speed of the proposed approach of 289 frames per second makes it suitable for real-time clinical use.

2018 ◽  
Vol 2 (2) ◽  
pp. 169
Author(s):  
Alan Boy Sandy Damanik ◽  
Agung Bimantoro

Economics is one of the most important aspects in the world. Economics greatly determines the progress and development of a country. However, there are still many countries with low economic levels. Therefore the aim of this study is to predict and determine the level of the main indicators of the world economy as one of the anticipatory steps to further increase the level of the country's economy. World Economic Indicator Data to be used is sourced from Bloomberg and Bank Indonesia. To find out further developments, it is necessary to research the existing data. The algorithm used is Backpropagatian Neural Network. Data analysis was carried out using artificial neural network method using Matlab R2011b software. The study uses 5 architectural models. The best network architecture produced is 3-43-1 with an accuracy rate of 86% and the Mean Squared Error (MSE) value is 1.336593.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


2019 ◽  
Vol 962 ◽  
pp. 41-48
Author(s):  
Tzong Daw Wu ◽  
Jiun Shen Chen ◽  
Ching Pei Tseng ◽  
Cheng Chang Hsieh

This study presents a real-time method for determining the thickness of each layer in multilayer thin films. Artificial neural networks (ANNs) were introduced to estimate thicknesses from a transmittance spectrum. After training via theoretical spectra which were generated by thin-film optics and modified by noise, ANNs were applied to estimate the thicknesses of four-layer nanoscale films which were TiO2, Ag, Ti, and TiO2 thin films assembled sequentially on polyethylene terephthalate (PET) substrates. The results reveal that the mean squared error of the estimation is 2.6 nm2, and is accurate enough to monitor film growth in real time.


2020 ◽  
Vol 10 (18) ◽  
pp. 6386
Author(s):  
Xing Bai ◽  
Jun Zhou

Benefiting from the booming of deep learning, the state-of-the-art models achieved great progress. But they are huge in terms of parameters and floating point operations, which makes it hard to apply them to real-time applications. In this paper, we propose a novel deep neural network architecture, named MPDNet, for fast and efficient semantic segmentation under resource constraints. First, we use a light-weight classification model pretrained on ImageNet as the encoder. Second, we use a cost-effective upsampling datapath to restore prediction resolution and convert features for classification into features for segmentation. Finally, we propose to use a multi-path decoder to extract different types of features, which are not ideal to process inside only one convolutional neural network. The experimental results of our model outperform other models aiming at real-time semantic segmentation on Cityscapes. Based on our proposed MPDNet, we achieve 76.7% mean IoU on Cityscapes test set with only 118.84GFLOPs and achieves 37.6 Hz on 768 × 1536 images on a standard GPU.


2020 ◽  
Vol 226 ◽  
pp. 02020
Author(s):  
Alexey V. Stadnik ◽  
Pavel S. Sazhin ◽  
Slavomir Hnatic

The performance of neural networks is one of the most important topics in the field of computer vision. In this work, we analyze the speed of object detection using the well-known YOLOv3 neural network architecture in different frameworks under different hardware requirements. We obtain results, which allow us to formulate preliminary qualitative conclusions about the feasibility of various hardware scenarios to solve tasks in real-time environments.


2020 ◽  
Vol 196 ◽  
pp. 02007
Author(s):  
Vladimir Mochalov ◽  
Anastasia Mochalova

In this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time ahead on the basis of the new data obtained Examples of predicting the ionosphere parameters using an artificial recurrent neural network architecture long short-term memory are given. The place of the block for predicting the parameters of the ionosphere in the system for analyzing ionospheric data using deep learning methods is shown.


2017 ◽  
Author(s):  
Martin Van Damme ◽  
Simon Whitburn ◽  
Lieven Clarisse ◽  
Cathy Clerbaux ◽  
Daniel Hurtmans ◽  
...  

Abstract. Recently, Whitburn et al. (2016) presented a neural network-based algorithm for retrieving atmospheric ammonia (NH3) columns from IASI satellite observations. In the past year, several improvements have been introduced and the resulting new baseline version, ANNI-NH3-v2, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2R-I) which relies on ERA-Interim ECMWF meteorological input data, along with built-in surface temperature, rather than the operationally provided Eumetsat IASI L2 data used for the standard near-real time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 timeseries, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014).


Sign in / Sign up

Export Citation Format

Share Document