scholarly journals Sobolev regularity for the first order Hamilton–Jacobi equation

2015 ◽  
Vol 54 (3) ◽  
pp. 3037-3065 ◽  
Author(s):  
Pierre Cardaliaguet ◽  
Alessio Porretta ◽  
Daniela Tonon
1963 ◽  
Vol 6 (3) ◽  
pp. 341-350 ◽  
Author(s):  
J. R. Vanstone

In the problem of finding the motion of a classical particle one has the choice of dealing with a system of second order ordinary differential equations (Lagrange's equations) or a single first order partial differential equation (the Hamilton-Jacobi equation, henceforth referred to as the H-J equation). In practice the latter method is less frequently used because of the difficulty in finding complete integrals. When these are obtainable, however, the method leads rapidly to the equations of the trajectories. Furthermore it is of fundamental theoretical importance and it provides a basis for quantum mechanical analogues.


2019 ◽  
Vol 21 (04) ◽  
pp. 1850018 ◽  
Author(s):  
Valentine Roos

We study the Cauchy problem for the first-order evolutionary Hamilton–Jacobi equation with a Lipschitz initial condition. The Hamiltonian is not necessarily convex in the momentum variable and not a priori compactly supported. We build and study an operator giving a variational solution of this problem, and get local Lipschitz estimates on this operator. Iterating this variational operator we obtain the viscosity operator and extend the estimates to the viscosity framework. We also check that the construction of the variational operator gives the Lax–Oleinik semigroup if the Hamiltonian is convex or concave in the momentum variable.


2002 ◽  
Vol 69 (6) ◽  
pp. 749-754 ◽  
Author(s):  
B. Tabarrok ◽  
C. M. Leech

Hamilton’s principle was developed for the modeling of dynamic systems in which time is the principal independent variable and the resulting equations of motion are second-order differential equations. This principle uses kinetic energy which is functionally dependent on first-order time derivatives, and potential energy, and has been extended to include virtual work. In this paper, a variant of Hamiltonian mechanics for systems whose motion is governed by fourth-order differential equations is developed and is illustrated by an example invoking the flexural analysis of beams. The variational formulations previously associated with Newton’s second-order equations of motion have been generalized to encompass problems governed by energy functionals involving second-order derivatives. The canonical equations associated with functionals with second order derivatives emerge as four first-order equations in each variable. The transformations of these equations to a new system wherein the generalized variables and momenta appear as constants, can be obtained through several different forms of generating functions. The generating functions are obtained as solutions of the Hamilton-Jacobi equation. This theory is illustrated by application to an example from beam theory the solution recovered using a technique for solving nonseparable forms of the Hamilton-Jacobi equation. Finally whereas classical variational mechanics uses time as the primary independent variable, here the theory is extended to include static mechanics problems in which the primary independent variable is spatial.


2010 ◽  
Vol 833 (1-2) ◽  
pp. 1-16 ◽  
Author(s):  
L. Andrianopoli ◽  
R. D'Auria ◽  
E. Orazi ◽  
M. Trigiante

2012 ◽  
Vol 142 (6) ◽  
pp. 1193-1236 ◽  
Author(s):  
Albert Fathi

We introduce the notion of a viscosity solution for the first-order Hamilton–Jacobi equation, in the more general setting of manifolds, to obtain a weak KAM theory using only tools from partial differential equations. This work should be accessible to people with no prior knowledge of the subject.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Javier Pérez Álvarez

AbstractThe Lagrange–Charpit theory is a geometric method of determining a complete integral by means of a constant of the motion of a vector field defined on a phase space associated to a nonlinear PDE of first order. In this article, we establish this theory on the symplectic structure of the cotangent bundle $$T^{*}Q$$ T ∗ Q of the configuration manifold Q. In particular, we use it to calculate explicitly isotropic submanifolds associated with a Hamilton–Jacobi equation.


2020 ◽  
Vol 23 (3) ◽  
pp. 306-311
Author(s):  
Yu. Kurochkin ◽  
Dz. Shoukavy ◽  
I. Boyarina

The immobility of the center of mass in spaces of constant curvature is postulated based on its definition obtained in [1]. The system of two particles which interact through a potential depending only on the distance between particles on a three-dimensional sphere is considered. The Hamilton-Jacobi equation is formulated and its solutions and trajectory equations are found. It was established that the reduced mass of the system depends on the relative distance.


Sign in / Sign up

Export Citation Format

Share Document