scholarly journals Sharp interface limit of a multi-phase transitions model under nonisothermal conditions

Author(s):  
Riccardo Cristoferi ◽  
Giovanni Gravina

AbstractA vectorial Modica–Mortola functional is considered and the convergence to a sharp interface model is studied. The novelty of the paper is that the wells of the potential are not constant, but depend on the spatial position in the domain $$\Omega $$ Ω . The mass constrained minimization problem and the case of Dirichlet boundary conditions are also treated. The proofs rely on the precise understanding of minimizing geodesics for the degenerate metric induced by the potential.

Author(s):  
Christian Rohde ◽  
Lars von Wolff

We consider the incompressible flow of two immiscible fluids in the presence of a solid phase that undergoes changes in time due to precipitation and dissolution effects. Based on a seminal sharp interface model a phase-field approach is suggested that couples the Navier–Stokes equations and the solid’s ion concentration transport equation with the Cahn–Hilliard evolution for the phase fields. The model is shown to preserve the fundamental conservation constraints and to obey the second law of thermodynamics for a novel free energy formulation. An extended analysis for vanishing interfacial width reveals that in this limit the sharp interface model is recovered, including all relevant transmission conditions. Notably, the new phase-field model is able to realize Navier-slip conditions for solid–fluid interfaces in the limit.


2020 ◽  
Vol 229 (19-20) ◽  
pp. 2899-2909
Author(s):  
L. V. Toropova ◽  
P. K. Galenko ◽  
D. V. Alexandrov ◽  
M. Rettenmayr ◽  
A. Kao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document