scholarly journals Polyphase extensional basins: interplay between tectonics and sedimentation in the Neogene Siena-Radicofani Basin (Northern Apennines, Italy)

Author(s):  
Ivan Martini ◽  
Elisa Ambrosetti ◽  
Andrea Brogi ◽  
Mauro Aldinucci ◽  
Frank Zwaan ◽  
...  

AbstractRift-basins are the shallow effects of lithosphere-scale extensional processes often producing polyphase faulting. Their sedimentary evolution depends on the mutual interplay between tectonics, climate, and eustasy. Estimating the role of each factor is generally a challenging issue. This paper is focused on the tectono-sedimentary evolution of the Neogene Siena-Radicofani Basin, a polyphase structural depression located in the inner Northern Apennines. Since Miocene, this basin developed after prolonged extensional tectonics, first as a bowl-shaped structural depression, later reorganized into a half-graben structure due to the activation of high-angle normal faults in the Zanclean. At that time the basin contained coeval continental and marine settings controlled by the normal faulting that caused the development of local coarse-grained depositional systems. These were investigated to: (i) discriminate between the influences of tectonics and climate on sedimentation patterns, and (ii) provide detailed time constraints on fault activity. The analysed successions were deposited in an interval between 5.08 and 4.52 Ma, when a climate-induced highstand phase occurred throughout the Mediterranean. However, evidence of local relative sea-level drops is registered in the sedimentary record, often associated with increased accommodation space and sediment supply. Such base-level fluctuations are not connected to climate changes, suggesting that the faults generally control sedimentation along the basin margins.

2021 ◽  
Vol 9 ◽  
Author(s):  
Pablo Granado ◽  
Jonas B. Ruh ◽  
Pablo Santolaria ◽  
Philipp Strauss ◽  
Josep Anton Muñoz

We present a series of 2D thermo-mechanical numerical experiments of thick-skinned crustal extension including a pre-rift salt horizon and subsequent thin-, thick-skinned, or mixed styles of convergence accompanied by surface processes. Extension localization along steep basement faults produces half-graben structures and leads to variations in the original distribution of pre-rift salt. Thick-skinned extension rate and salt rheology control hanging wall accommodation space as well as the locus and timing of minibasin grounding. Upon shortening, extension-related basement steps hinder forward propagation of evolving shallow thrust systems; conversely, if full basin inversion takes place along every individual fault, the regional salt layer is placed back to its pre-extensional configuration, constituting a regionally continuous décollement. Continued shortening and basement involvement deform the shallow fold-thrust structures and locally breaches the shallow décollement. We aim at obtaining a series of structural, stratigraphic and kinematic templates of fold-and-thrust belts involving rift basins with an intervening pre-rift salt horizon. Numerical results are compared to natural cases of salt-related inversion tectonics to better understand their structural evolution.


2020 ◽  
pp. 2293-2302
Author(s):  
Karrar Hassooni Awad ◽  
Hamid Ali Ahmed Alsultan

A surface section of the Gercus Formation (Middle-Late Eocene) was studied in Berafat area, Dohuk Governorate, Northern Iraq. The Gercus Formation consists of a mixed siliciclastic sediments, evaporates and carbonate sequences in the studied region, predominantly in the upper and middle parts. Nevertheless, it usually consists of upward-fining carbonate-rich sandstone cyclothems, marl, conglomerate and siltstone along with a gypsum lens and thin micrite carbonate beds.  The Gercus Formation was deposited in delta and delta front of occasionally depositional environment which is represented by red-brown claystone and reddish-brown mudstone lithofacies. Cross bedded  pebbly sandstone, trough cross-bedded sandstone  and laminated cross-bedded sandstone lithofacies are deposited in braided delta  environment. Marl lithofacies and gypsum lithofacies are deposited in intertidal and supratidal environments. The sea level fluctuation caused the river base level to occasionally rise and fall. In addition, the process changed from erosion to deposition, while the grain size also changed at different environments from gravel to sand and clays. The Gercus succession of northern Iraq was developed during the Middle-Late Eocene in an active margin basin, where the last stage closure of the New-Tethys and its collision with the Eurasian plate took place between the northeastern Arabian plate. It caused major episodes of uplifts and subsidence along with base level variations due to eustatic ups and downs. Within Gercus Formation, several fourth order cycles can be recognized, reflecting generally asymmetrical cycles, as well as the difference between sediment supply and accommodation space.


2021 ◽  
Author(s):  
Francesca Stendardi ◽  
Gianluca Vignaroli ◽  
Giulio Viola

<p>The Northern Apennines are an accretionary wedge formed in response to the Late Cretaceous-Eocene closure of the Ligurian-Piedmont ocean and the subsequent Oligocene-Miocene convergence and collision between Africa and Europe. The wedge is formed by a stack of different paleogeographic units which, from the innermost to the outermost and from top to bottom, are: (i) the Ligurian Domain (formed by Jurassic ophiolites and their Cretaceous-to-Paleocene sedimentary cover); (ii) the Sub-Ligurian Domain (Paleocene-to-lower Miocene deep marine sediments and turbidites); (iii) the Tuscan-Umbria-Marche Domain (mostly including Jurassic-to-Oligocene platform and basinal carbonate successions, overlain by Miocene-Pliocene turbidites). The wedge is shaped by WNW-ESE-striking and SW-dipping thrusts, accommodating a general northeastward tectonic transport. Atop of the deformed Ligurian Domain there occur the Epiligurian Units, which consist of middle Eocene-upper Miocene bathyal to shallow-water siliciclastic deposits infilling wedge-top basins. These Units presently fill in separate basins with poor lateral interconnectivity due to erosion and deformation. Since the Miocene, thrusting toward the (eastern) orogenic foreland occurred simultaneously with extension in the (western) hinterland domain, causing the formation of NW-SE-striking normal faults. Presently, focal mechanisms of the stronger earthquakes constrain dominant thrusting associated with NE-SW regional shortening, whereas the extensional regime controls the seismicity along the axial portion of the wedge. This recently launched study aims to better characterize the deformation structures affecting the Epiligurian Units in the internal and external sectors of the Northern Apennines (Emilia-Romagna Region) with the goal to provide a comprehensive syn-to-post accretion evolutionary scenario for these shallow basins. In particular, deformation structures affecting these wedge-top sequences of the inner (southwestern) side of the wedge are being studied by their systematic geometric and kinematic multiscalar and multitechnique characterization. Top-to-the NE, WNW-ESE-striking thrusts/reverse faults, dipping moderately to SSW are defined by planar slip surfaces associated with thin clastic damage zones. Top-to-the SE, ENE-WSW-striking thrusts/reverse faults, are instead generally devoid of well-developed damage zones. These contractional faults are systematically cut by NW-SE and NE-SW-striking normal and oblique faults systems, characterized by mutually intersecting fault planes accommodating centimetric to decimetric throws. Associated with the extensional structures occur widespread cataclastic and disaggregation deformation bands. They are found as either single bands or clusters, cutting across upper Eocene coarse-grained sandstones. Our preliminary results show that the Epiligurian Units experienced a complex tectonic evolution, including NNE-SSW shortening followed by NE-SW extension. The structural record of these wedge top basins is useful to infer the kinematics and rate of wedge build up and tearing down during the progressive evolution of the continental collision. The Epiligurian Units can thus be considered as useful gages of the deformation history of the Northern Apennines wedge, with noteworthy implications on its current seismotectonic setting.</p>


2021 ◽  
Author(s):  
Andrea Brogi

<p>The Neogene and Quaternary tectonic evolution of the inner Northern Apennines (i.e southern Tuscany and northern Tyrrhenian Sea), as well as its crustal features (i.e. low crustal thickness, Neogene-Quaternary magmatism, widespread geothermal anomalies, lateral segmentation of the stacked tectonic units, extensive deep sedimentary basins), are framed in different geodynamic scenarios: compressional, extensional or both, pulsing. Consequently, the basin and range structure that characterises the northern Tyrrhenian Sea and southern Tuscany is considered as a consequence of (i) out-of-sequence thrusts and related thrust-top-basins, (ii) polyphased normal faulting that formed horst and graben structures or (iii) a combination of both. This paper provides a new dataset from a sector of the eastern inner Northern Apennines (i.e. Monti del Chianti - Monte Cetona ridge) contributing to this scientific debate. New fieldwork and structural analysis carried out in selected areas along the ridge allowed to define the chronology of the main tectonic events on the basis of their influence on the marine and continental sedimentation. The dataset supports for early Miocene - (?) Serravallian in-sequence and out-of-sequence thrusting. Thrusting produced complex staking patterns of Tuscan and Ligurian Units. Extensional detachments developed since later middle Miocene and controlled the Neogene sedimentation in bowl-shaped structural depressions, later dissected by normal faults enhancing the accommodation space for Pliocene marine deposits in broad NNW-trending basins (Siena-Radicofani and Valdichiana Basins). In this perspective, no data supports for active, continuous or pulsing, compressional tectonics after late Serravalian. As a result, in the whole inland inner Northern Apennines the extensional tectonics was continuously active at least since middle Miocene and controlled the basins development, magmatism and structure of the crust and lithosphere.</p>


2005 ◽  
Vol 176 (5) ◽  
pp. 443-455 ◽  
Author(s):  
Michel Bilotte ◽  
Laurent Koess ◽  
Elie-Jean Debroas

Abstract In the eastern part of the Aquitaine Basin and to the south of the Toulouse high, the Subpyrenean trough is a narrow trench oriented N110°E to N130° E. The deposits on the northeastern side of this depression are preserved in the autochthonous Mesozoic cover of the Variscan Mouthoumet Massif, but also in the parautochthonous or allochthonous tectonic units that fringe to the north (Camps – Peyrepertuse slice, fig. 2) the North Pyrenean frontal thrust. From the Middle Cenomanian to the Lower Santonian included (96 to 85 Ma ago), the sedimentation in the Mouthoumet Massif indicates shallow marine carbonate or mixed (carbonate to terrigenous) conditions. The different facies depend mainly on two parameters : the variations of the accommodation space for sedimentation and the location of the numerous rudist buildups. The deposits are first organized in a homoclinal ramp until the Turonian. From the Coniacian up to the early Santonian, drowned platform patterns prevail. During the late Santonian and more precisely around 85 Ma with an other event around 84 Ma, the Mouthoumet Massif and its cover broke up under tectonic stresses. Positive and negative topographies reactivate the Variscan fault system. Platform – slope/basin morphologies substituted the preceeding ramp and drowned platform morphology. Looking to the south and in the direction N120°E, the distal slope received gravitational and turbiditic sediments called the Grès de Labastide (fig. 7). The sediment supply shifted from north to south and from east to west. To the north of this slope, the platform itself broke up into a mosaic of rhomboedric blocks, leading to a graben and horst morphology. Those units are clearly different according to the character of their sedimentary facies, deltaic or reefal (Montagne des Cornes, Calcaires de Camps – Peyrepertuse). The detailed stratigraphic and sedimentologic studies of some of these systems reveal a tectono-sedimentary evolution involving two successive cycles Ss1 (lower Upper Santonian) and Ss2 (Uppermost Santonian). In the western part of the Mouthoumet Massif this cyclic evolution is recorded from south to north, on the Parahou slope, the Rennes-les-Bains graben and the Bugarach horst. The lower cycle Ss1, located on the Rennes-les-Bains graben, is approximatively 85 Ma to 84 Ma in age. It starts with reworked deposits (lowstand systems tract) made up of sometimes several m3 elements derived from former sedimentary deposits (from Turonian up to Lower Santonian) even when the same deposits are in place on the adjacent horsts (e.g. the eastern horst of Bugarach). Those reworked deposits fill the bottom of the graben, principally in the transit zones (debris-flows of the Conglomerat de la Ferrière), or in the Parahou slope (slumps and debris-flows of the Cascade des Mathieux); then the deltaic complex of Rennes-les-Bains covers the older chaotic deposits; the blue marls and the overlying sandy facies (transgressive and highstand systems tracts) related to prodelta and deltafront deposits represent the infilling of the Rennes-les Bains graben. The upper cycle Ss2 developed probably between 84 Ma to 83,5 Ma; its geographical extension overlaps the limits of the lower cycle (e.g. the Bugarach horst), but its sedimentary organisation is still the same including: on the Parahou slope debris-flow and intrabasinal reworking (Conglomérat des Gascous: lowstand systems tract); on the northern platform transgressive and highstand systems tracts, present in the Montagne des Cornes delta where the Marnes bleues de Sougraigne represent the prodelta deposits, and the terrigenous and rudist buildups of the delta front deposits (fig.7). The final infilling results from the spreading from NE to SW, of the (estuarine ? to) fluvial deposits of the Grès d’Alet Formation at around 83 Ma. In the eastern part of the Mouthoumet Massif, sedimentary development is punctuated by tectonic events. Nevertheless, it is possible to identify in some outcrops the main elements of the two tectono-sedimentary cycles. – The cycle Ss1 is partly preserved in the genetic sequence which links the Calcaires de Camps-Peyrepertuse (shelf margin wedge systems tract) and the Marnes du Pla de Sagnes (transgressive systems tract). The cycle Ss2 is only known through different facies of the Grès de Labastide Formation: reworked deposits on the slope; coarse-grained silicoclastic deposits on the transit zones. – In the cycle Ss1 differences appear between the western and the eastern parts of the Mouthoumet massif. When in the western area deltaic conditions prevailed, in the eastern area a shallow carbonate and buildup facies developed. Such differences disappear in the cycle Ss2 by the general establishment of fore slope deltaic deposits. The geodynamic reconstruction resulting from plate kinematics indicates a major change between the early Coniacian (89 Ma) and the Middle Campanian (79 Ma), when the sinistral/divergent motion of Iberia with respect to stable Europe turned to a dextral/convergent movement. The tectono-sedimentary events presented here took place during this period (85 Ma to 83 Ma). The tectono-sedimentary evolution of the subpyrenean trough and the shift of the European and Iberian plates are thought to be intimately linked. The new chronological and geodynamical data proposed herein show that the genesis and the evolution of the subpyrenean sedimentary processes related to the northern Aquitanian margin of the Subpyrenean trough allow to draw some basic conclusions: – the opening of the Subpyrenean trough occurred in two steps, the first around 85 Ma and the second around 84 Ma; – this caused a change in the sedimentary setting with platform environments replacing the earlier ramp geometry; – the Subpyrenean trough formed and evolved under transtensive tectonic conditions; – during the late Santonian two tectono-eustatic sequences marked the former stages of the eastward opening and infilling of this basin; – the diachronous infilling which began here around 83,5 Ma prograded to the western Plantaurel and Petites-Pyrénées area; – no significant northward shifting of the depositional-axis of the Senonian basins occurred; – only a gradual westward shift of the depositional centers, along the subpyrenean direction of the slope area (N110°E to N130°E) was noticed.


2010 ◽  
Vol 82 (4) ◽  
pp. 997-1012 ◽  
Author(s):  
Caroline J.S. Gomes ◽  
André Danderfer Filho ◽  
Ana Maria A. Posada ◽  
Anielle C. da Silva

The style of deformation of rocks from basin-infilling sequences in positively inverted natural basins was discussed upon the results of laboratory experiments carried out in sandboxes with sand packs laid down in the space between two wooden blocks. The space simulated stages of crustal extension leading to (1) a half graben due to extension above a listric extensional detachment, with the blocks simulating the footwall and hanging wall, or (2) a graben, with the blocks simulating the external margins that drifted apart above a horizontal detachment. Combinations of two different angles were used to simulate the dip of curved normal faults along the internal face of the wooden blocks. Backstops in the half graben had a convex up internal face. Backstops in the graben had a concave up internal face. Shortening as partitioned in forward and backward movements within the sand packs, and the kinematics of contraction was largely influenced by the convex or concave internal faces. A buttress effect characterized by rotation of the sand pack close to the footwall was stronger for footwall with steeper-dipping internal faces. The results were compared to other physical experiments and applied to an inverted basin found in nature.


2021 ◽  
Vol 91 (3) ◽  
pp. 317-347
Author(s):  
ANTOINE DILLINGER ◽  
ANNETTE D. GEORGE ◽  
ROMAIN VAUCHER

Abstract Tectonic activity in extensional basins has a profound control on accommodation and sediment supply through the interplay between footwall uplift and hanging-wall subsidence, and thus largely influences the three-dimensional architecture of syn-rift sequences. This is emphasized in areas close to major rift-border faults, where steep coastal reliefs and fluvial gradients produce compound facies zonation and stratigraphic styles with strong lateral variability. The lower Permian High Cliff Sandstone was deposited in an array of shallow marine environments along the margin of the northern Perth Basin during a protracted late Paleozoic rifting episode in Western Australian basins. The formation is composed of fluvio-deltaic and nearshore strata sharply overlying a thick succession of offshore mudstone that was deposited during a phase of tectonic quiescence. This basal contact likely reflects submarine erosion and is, therefore, interpreted as a regressive surface of marine erosion generated in response to forced regression. The facies arrangement consisting of interbedded sandstone, conglomerate, and heterolithic facies chiefly records the evolution of a low- to high-gradient paleoshoreline punctuated by coastal streams, steep sea cliffs, and back-barrier lagoons. Extraformational outsized clasts were probably emplaced by the erosion of exhumed basement and older sedimentary rocks through fluvial incision, wave sapping, or landsliding. The along-strike variability between low- and high-gradient shoreline deposits indicates a dynamic depositional setting with a complex tectonic influence. The basal regressive surface of marine erosion is attributed to footwall uplift during the early reactivation stage of basin-bounding normal faults and, therefore, records the initiation of a new syn-rift phase in the northern Perth Basin.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 141
Author(s):  
Massimiliano Ghinassi ◽  
Mauro Aldinucci ◽  
Valeria Bianchi ◽  
Andrea Brogi ◽  
Enrico Capezzuoli ◽  
...  

Downcutting and infill of incised valley systems is mostly controlled by relative sea-level changes, and studies on valley-fill successions accumulated independently from relative sea-level or lake-level oscillations are limited. This study focuses on the Plio-Pleistocene evolution of a fluvial drainage system developed in Southern Tuscany (Italy) following a regional marine forced regression at the end of Piacentian. Subsequent in-valley aggradation was not influenced by any relative sea-level rise, and valley morphological and depositional history mainly resulted from interaction between sediment supply and tectonic activity, which caused segmentation of the major valley trunk into localized subsiding depocenters separated by upwarping blocks. Fluvial sedimentation occurred until late Calabrian time, when the major river abandoned that valley, where minor fluvio-lacustrine depocenters allowed accumulation of siliciclastic and carbonate deposits. The present study demonstrates that the infill of the valley was not controlled by the forcing that caused its incision. Accumulation of the fluvial succession is discussed here in relation with localized, tectonic-controlled base levels, which commonly prevent from establishing of a clear downdip stratigraphic correlations. Chronological reconstruction of the study depositional dynamics provides solid constrains to frame them in the tectono-sedimentary evolution of the Northern Apennines.


Sign in / Sign up

Export Citation Format

Share Document