Differential effects of nutritional and non-nutritional therapies on intestinal barrier function in an in vitro model

2011 ◽  
Vol 47 (2) ◽  
pp. 107-117 ◽  
Author(s):  
Lily Nahidi ◽  
Andrew S. Day ◽  
Daniel A. Lemberg ◽  
Steven T. Leach
Author(s):  
Wies T. M. van Dooremalen ◽  
Merel Derksen ◽  
Jamie Lee Roos ◽  
Celia Higuera Barón ◽  
Carla S. Verissimo ◽  
...  

2020 ◽  
Author(s):  
Jingtao Wu ◽  
Caimei He ◽  
Jie Bu ◽  
Yue Luo ◽  
Shuyuan Yang ◽  
...  

Abstract Background:The intestinal epithelial barrier, which works as the first line of defense between the luminal environment and the host, once destroyed, it will cause serious inflammation or other intestinal diseases. Tight junctions (TJs) play a vital role to maintain the integrity of the epithelial barrier. Lipopolysaccharide (LPS), one of the most important inflammatory factors will downregulate specific TJ proteins including Occludin and Claudin-1 and impair integrity of the epithelial barrier. Betaine has excellent anti-inflammatory activity but whether betaine has any effect on TJ proteins, particularly on LPS-induced dysfunction of epithelial barriers remains unknown. The purpose of this study is to explore the pharmacological effect of betaine on improving intestinal barrier function represented by TJ proteins. Intestinal porcine epithelial cells (IPEC-J2) were used as an in vitro model. Results: The results demonstrated that betaine enhanced the expression of TJ proteins while LPS (1µg/mL) downregulates the expression of these proteins. Furthermore, betaine attenuates LPS-induced decreases of TJ proteins both shown by Western blot (WB) and Reverse transcription- polymerase chain reaction (RT-PCR). The immunofluorescent images consistently revealed that LPS induced the disruption of TJ protein Claudin-1 and reduced its expression while betaine could reverse these alterations. Similar protective role of betaine on intestinal barrier function was observed by transepithelial electrical resistance (TEER) approach. Conclusion: In conclusion, our research demonstrated that betaine attenuated LPS-induced downregulation of Occludin and Claudin-1 and restored the intestinal barrier function.


2020 ◽  
Author(s):  
Jingtao Wu ◽  
Caimei He ◽  
Jie Bu ◽  
Yue Luo ◽  
Shuyuan Yang ◽  
...  

Abstract Background : The intestinal epithelial barrier, which works as the first line of defense between the luminal environment and the host, once destroyed, it will cause serious inflammation or other intestinal diseases. Tight junctions (TJs) play a vital role to maintain the integrity of the epithelial barrier. Lipopolysaccharide (LPS), one of the most important inflammatory factors will downregulate specific TJ proteins including Occludin and Claudin-1 and impair integrity of the epithelial barrier. Betaine has excellent anti-inflammatory activity but whether betaine has any effect on TJ proteins, particularly on LPS-induced dysfunction of epithelial barriers remains unknown. The purpose of this study is to explore the pharmacological effect of betaine on improving intestinal barrier function represented by TJ proteins. Intestinal porcine epithelial cells (IPEC-J2) were used as an in vitro model. Results: The results demonstrated that betaine enhanced the expression of TJ proteins while LPS (1µg/mL) downregulates the expression of these proteins. Furthermore, betaine attenuates LPS-induced decreases of TJ proteins both shown by Western blot (WB) and Reverse transcription- polymerase chain reaction (RT-PCR). The immunofluorescent images consistently revealed that LPS induced the disruption of TJ protein Claudin-1 and reduced its expression while betaine could reverse these alterations. Similar protective role of betaine on intestinal barrier function was observed by transepithelial electrical resistance (TEER) approach. Conclusion: In conclusion, our research demonstrated that betaine attenuated LPS-induced downregulation of Occludin and Claudin-1 and restored the intestinal barrier function.


Planta Medica ◽  
2016 ◽  
Vol 82 (18) ◽  
pp. 1553-1557 ◽  
Author(s):  
Océane Dubray ◽  
Brice Moulari ◽  
Claire Chrétien ◽  
Yann Pellequer ◽  
Alf Lamprecht ◽  
...  

2021 ◽  
Author(s):  
Benthe van der Lugt ◽  
Maartje C.P. Vos ◽  
Mechteld Grootte Bromhaar ◽  
Noortje Ijssennagger ◽  
Frank Vrieling ◽  
...  

Pharmacology ◽  
2019 ◽  
Vol 105 (1-2) ◽  
pp. 102-108 ◽  
Author(s):  
Norio Nishii ◽  
Tadayuki Oshima ◽  
Min Li ◽  
Hirotsugu Eda ◽  
Kumiko Nakamura ◽  
...  

Introduction: Lubiprostone, a chloride channel activator, is said to reduce epithelial permeability. However, whether lubiprostone has a direct effect on the epithelial barrier function and how it modulates the intestinal barrier function remain unknown. Therefore, the effects of lubiprostone on intestinal barrier function were evaluated in vitro. Methods: Caco-2 cells were used to assess the intestinal barrier function. To examine the expression of claudins, immunoblotting was performed with specific antibodies. The effects of lubiprostone on cytokines (IFNγ, IL-6, and IL-1β) and aspirin-induced epithelial barrier disruption were assessed by transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC) labeled-dextran permeability. Results: IFNγ, IL-6, IL-1β, and aspirin significantly decreased TEER and increased epithelial permeability. Lubiprostone significantly improved the IFNγ-induced decrease in TEER in a dose-dependent manner. Lubiprostone significantly reduced the IFNγ-induced increase in FITC labeled-dextran permeability. The changes induced by IL-6, IL-1β, and aspirin were not affected by lubiprostone. The expression of claudin-1, but not claudin-3, claudin-4, occludin, and ZO-1 was significantly increased by lubiprostone. Conclusion: Lubiprostone significantly improved the IFNγ-induced decrease in TEER and increase in FITC labeled-dextran permeability. Lubiprostone increased the expression of claudin-1, and this increase may be related to the effect of lubiprostone on the epithelial barrier function.


Sign in / Sign up

Export Citation Format

Share Document