scholarly journals Effects of amitriptyline, a tricyclic antidepressant, on smooth muscle reactivity in isolated rat trachea

2009 ◽  
Vol 23 (3) ◽  
pp. 385-391 ◽  
Author(s):  
Shoji Matsunaga ◽  
Osamu Shibata ◽  
Kenji Nishioka ◽  
Atsushi Tsuda ◽  
Tetsuji Makita ◽  
...  
1990 ◽  
Vol 64 (01) ◽  
pp. 091-096 ◽  
Author(s):  
W J Janssens ◽  
F J S Cools ◽  
L A M Hoskens ◽  
J M Van Nueten

SummaryRidogrel (6.3 × 10−6 to 10−4 M) inhibited contractions of isolated rat caudal arteries and rabbit femoral arteries caused by U-46619. The slope of an Arunlakshana-Schild plot (pA2-value: 3.4 × 10−6 M) on the caudal artery was slightly higher than one (1.14). This effect was maximal within}D min of incubation of the blood vessel with the compound and easily reversible. Ridogrel antagonised contractions of isolated rabbit femoral arteries caused by prostaglandin Fzo2α in the same concentration range. Ridogrel also inhibited contractions induced by aggregating rat platelets on isolated rat caudal arteries (itt the presence of ketanserin 4 × 10−7 M) and on isolated rabbit pulmonary and femoral arteries (in the absence of ketanserin). Ridogrel had no effect on Ca2+-induced contractions in depolarised isolated rabbit femoral arteries, and at 10−4 M antagonised serotonin-induced contractions in this blood vessel. Its effect on serotonin-induced contractions was statistically significant but very small on isolated rat caudal arteries. These observations indicate that ridogrel is an antagonist of prostaglandin endoperoxide/thromboxane A2 and prostaglandin F2α raCeptors on vascular smooth muscle.


2015 ◽  
Vol 29 (5) ◽  
pp. 809-812 ◽  
Author(s):  
Hung-Chi Chang ◽  
Shin-Yan Chen ◽  
Yu-Feng Huang ◽  
Feng-Lin Liu ◽  
Yih-Giun Cherng ◽  
...  

2011 ◽  
Vol 89 (7) ◽  
pp. 467-476 ◽  
Author(s):  
Ji Seok Baik ◽  
Ju-Tae Sohn ◽  
Seong-Ho Ok ◽  
Jae-Gak Kim ◽  
Hui-Jin Sung ◽  
...  

Levobupivacaine is a long-acting local anesthetic that intrinsically produces vasoconstriction in isolated vessels. The goals of this study were to investigate the calcium-dependent mechanism underlying levobupivacaine-induced contraction of isolated rat aorta in vitro and to elucidate the pathway responsible for the endothelium-dependent attenuation of levobupivacaine-induced contraction. Isolated rat aortic rings were suspended to record isometric tension. Cumulative levobupivacaine concentration–response curves were generated in either the presence or absence of the antagonists verapamil, nifedipine, SKF-96365, 2-aminoethoxydiphenylborate, Gd3+, NW-nitro-l-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and methylene blue, either alone or in combination. Verapamil, nifedipine, SKF-96365, 2-aminoethoxydiphenylborate, low calcium concentrations, and calcium-free Krebs solution attenuated levobupivacaine-induced contraction. Gd3+ had no effect on levobupivacaine-induced contraction. Levobupivacaine increased intracellular calcium levels in vascular smooth muscle cells. L-NAME, ODQ, and methylene blue increased levobupivacaine-induced contraction in endothelium-intact aorta. SKF-96365 attenuated calcium-induced contraction in a previously calcium-free isotonic depolarizing solution containing 100 mmol/L KCl. Levobupivacaine-induced contraction of rat aortic smooth muscle is mediated primarily by calcium influx from the extracellular space mainly via voltage-operated calcium channels and, in part, by inositol 1,4,5-trisphosphate receptor-mediated release of calcium from the sarcoplasmic reticulum. The nitric oxide – cyclic guanosine monophosphate pathway is involved in the endothelium-dependent attenuation of levobupivacaine-induced contraction.


Planta Medica ◽  
2008 ◽  
Vol 74 (12) ◽  
pp. 1436-1440 ◽  
Author(s):  
Jonas Engelbertz ◽  
Tatjana Schwenk ◽  
Ute Kinzinger ◽  
Detlef Schierstedt ◽  
Eugen Verspohl
Keyword(s):  

2001 ◽  
Vol 41 (6) ◽  
pp. 727 ◽  
Author(s):  
Sun Chong Kim ◽  
Soon Im Kim ◽  
In Suk Jeon ◽  
Sang Chul Bai ◽  
Jeong Seok Lee ◽  
...  

1986 ◽  
Vol 250 (4) ◽  
pp. F619-F626 ◽  
Author(s):  
R. Loutzenhiser ◽  
M. Epstein ◽  
C. Horton ◽  
P. Sonke

U-44069 is a stable prostaglandin (PG) H2 analogue and a potent vasoconstrictor. Its in vivo and in vitro actions mimic those of thromboxane A2. We have studied the effects of the calcium antagonist diltiazem upon the vasoconstriction induced by U-44069 using isolated rat aortic smooth muscle and isolated perfused rat kidney (IPRK). The administration of 10(-6)M U-44069 elicited maximally effective contractions in isolated aortic rings and increased 45Ca uptake from a control value of 285 +/- 6 mumol/kg to 344 +/- 8 mumol/kg. Diltiazem reduced U-44069-induced tension development and 45Ca uptake of isolated aortic smooth muscle 73 +/- 2 and 91 +/- 3%, respectively. The dose dependency of each of these effects of diltiazem was similar (EC50 = 369 nM and 334 nM for tension and 45Ca flux, respectively). When administered to the IPRK, 10(-6) M U-44069 caused a 82 +/- 3% decrease in glomerular filtration rate (GFR) and a 80 +/- 4% decrease in filtration fraction but reduced renal perfusate flow (RPF) only 13 +/- 8% (P less than 0.005). Diltiazem completely reversed the actions of U-44069 on the IPRK (EC50 = 288 nM and 323 nM for GFR and RPF, respectively). Diltiazem thus inhibited U-44069-induced tension development and 45Ca uptake by vascular smooth muscle and increased GFR within identical dose ranges. The contractile response of isolated rat glomeruli was also assessed. U-44069 reduced the volume of isolated glomeruli, but this action was neither prevented nor reversed by diltiazem. These results are consistent with the hypothesis that diltiazem increased GFR by inhibiting U-44069-induced Ca influx at preglomerular vessels.


Sign in / Sign up

Export Citation Format

Share Document