A microchannel heat exchanger design for microelectronics cooling correlating the heat transfer rate in terms of Brinkman number

2009 ◽  
Vol 15 (9) ◽  
pp. 1373-1378 ◽  
Author(s):  
HeeSung Park
Author(s):  
Muhammad Ansab Ali ◽  
Tariq S. Khan ◽  
Ebrahim Al Hajri

The quest to achieve higher heat transfer rate, smaller size and minimum pressure drop is a main area of focus in the design of heat exchangers. Plate heat exchangers are one of viable candidates to deliver higher heat duties but still have a drawback of higher pressure drop due to long restricted flow path. Motivated by demand of miniaturization and cost reduction, a novel design of tubular microchannel heat exchanger for single phase flow employing ammonia water mixture is proposed. Numerical simulation of unit fluid domain is conducted in ANSYS Fluent. Parametric study of the different flow geometries is evaluated in terms of Nusselt number and pressure drop. The salient features of the design include ultra-compact size with higher heat transfer rate and acceptable pressure drop.


2013 ◽  
Vol 448-453 ◽  
pp. 3259-3269
Author(s):  
Zhi Wei Li ◽  
Hong Zhou He ◽  
Huang Huang Zhuang

The characteristics of the external heat exchanger (EHE) for a 4 MWth circulation fluidized bed combustor were studied in the present paper. The length, width and height of EHE were 1.5 m, 0.8 m and 9 m, respectively. The circulating ash flow passing the heating surface bed could be controlled by adjusting the fluidizing air flow and the heating transferred from the circulating ash to the cooling water. The ash flow rate passing through the heat transfer bed was from 0.4 to 2.2 kg/s. The ash average temperature was from 500 to 750 °C. And the heat transfer rate between the ash and the cooling water was between 150 and 300 W/(m2·°C). The relationships among the circulating ash temperature, the heat transfer, heat transfer rate, the heat transfer coefficient and the circulating ash flow passing through the heating exchange cell were also presented and could be used for further commercial EHE design.


2021 ◽  
Vol 34 (02) ◽  
Author(s):  
Mohammad Sikindar Baba ◽  
◽  
Oddarapu Kalyani ◽  

2020 ◽  
Vol 12 (18) ◽  
pp. 7345
Author(s):  
Linlin Zhang ◽  
Zhonghua Shi ◽  
Tianhao Yuan

In this paper, a dynamic heat transfer model for the vertical double U-tube borehole heat exchanger (BHE) was developed to comprehensively address the coupled heat transfer between the in-tube fluid and the soil with groundwater advection. A new concept of the heat transfer effectiveness was also proposed to evaluate the BHE heat exchange performance together with the index of the heat transfer rate. The moving finite line heat source model was selected for heat transfer outside the borehole and the steady-state model for inside the borehole. The data obtained in an on-site thermal response test were used to validate the physical model of the BHE. Then, the effects of soil type, groundwater advection velocity, inlet water flow rate, and temperature on the outlet water temperature of BHE were explored. Results show that ignoring the effects of groundwater advection in sand gravel may lead to deviation in the heat transfer rate of up to 38.9% of the ground loop design. The groundwater advection fosters the heat transfer of BHE. An increase in advection velocity may also help to shorten the time which takes the surrounding soil to reach a stable temperature. The mass flow rate of the inlet water to the BHE should be more than 0.5 kg·s−1 but should not exceed a certain upper limit under the practical engineering applications with common scale BHE. The efficiency of the heat transfer of the double U-tube BHE was determined jointly by factors such as the soil’s physical properties and the groundwater advection velocity.


Author(s):  
Jieun Hwang ◽  
Keumnam Cho

Heat exchanger experiences frost on its surface when it operates below 0°C under heating condition of the heat pump. Since frost blocks air flow through the fin tube heat exchanger, it increases air-side pressure drop and deteriorates heat transfer rate of the heat exchanger. Prediction of the frost profiles on the heat exchanger is needed to minimize the unfavorable effect on the heat exchanger by frost. The present study predicts non-uniform frost distribution on the surface of fin-tube heat exchanger and shows its accuracy by comparing with measured profiles. Fin and tube heat exchanger for heat pump was considered for the frost prediction under practical refrigerant and air conditions. Non-uniform frost pattern was predicted by using segment by segment method of the heat exchanger. Heat transfer rate and exit temperature of air and refrigerant for each segment were calculated by applying ε-NTU method. Air volume flow rate in the front of the heat exchanger was decreased as frost goes on. It was utilized for the prediction of the frost formation. Numerically predicted results were compared with measured local data. They agreed within ±10.4% under the ISO 5151 condition.


Sign in / Sign up

Export Citation Format

Share Document