A piezoelectric cantilever-beam energy harvester (PCEH) with a rectangular hole in the metal substrate

2019 ◽  
Vol 26 (3) ◽  
pp. 801-810 ◽  
Author(s):  
Yuzhong Xiong ◽  
Fang Song ◽  
Xinghuan Leng
2019 ◽  
Vol 83 (sp1) ◽  
pp. 976
Author(s):  
Ming Liu ◽  
Hengxu Liu ◽  
Hailong Chen ◽  
Yuanchao Chai ◽  
Liquan Wang

2021 ◽  
Vol 245 ◽  
pp. 114559
Author(s):  
Yee Yan Lim ◽  
Ricardo Vasquez Padilla ◽  
Andreas Unger ◽  
Rodrigo Barraza ◽  
Ahmed Mostafa Thabet ◽  
...  

Author(s):  
Ming Hui Yao ◽  
Wei Xia ◽  
Wei Zhang ◽  
Jian Yu Jiao

This paper presents a special piezoelectric energy harvester system which is obtained by separating the end of the upper piezoelectric layer of the traditional piezoelectric cantilever beam from its basic layer. A mass I is located at the end of the separated upper piezoelectric layer (SUPL), a mass II and a permanent magnet I are located at the end of the separated lower piezoelectric beam (SLPB) and a permanent magnet II is added in the opposite position of the permanent magnet I and they face each other with same polarities. A nonlinear magnetic force which can broaden the frequency bandwidth of the system is generated mutually on the two permanent magnets. Studies find that this special piezoelectric energy harvester has extremely high energy capture efficiency. In order to further explore the reason of high efficiency, experimental research on its dynamic behavior is carried out. The experimental results show that the vibrations of the SUPL and the SLPB are relatively simple. The dynamic behaviors of the SUPL, the SLPB and the unseparated part are different. The unseparated part of the piezoelectric shows relatively complex nonlinear phenomenon due to the interaction of nonlinear magnetic force and the collision. With the increase of the external excitation frequency, period doubling motion and almost periodic motion appear alternately.


2020 ◽  
Vol 36 (3) ◽  
pp. 557-577 ◽  
Author(s):  
Minghui Yao ◽  
Pengfei Liu ◽  
Li Ma ◽  
Hongbo Wang ◽  
Wei Zhang

2016 ◽  
Vol 248 ◽  
pp. 249-255
Author(s):  
Radosław Nowak ◽  
Marek Pietrzakowski

Machines, cars suspensions, buildings steel constructions etc. usually generate vibrations, which can be the excitement signal for piezoelectric energy harvesters. The piezoelectric patches attached to the vibrating construction have ability to convert mechanical energy of harmful vibrations into electrical energy.The goal of the study was to verify a finite element model of the piezoelectric beam energy harvester by comparing results of numerical simulations with those obtained experimentally. The stand used in the experiment consists of the cantilever beam with piezoelectric elements attached, which is excited by the base harmonic movement. The transverse displacements of the selected beam’s point and the base, and also the frequency of vibrations were observed and measured using an accelerometer and a B&K Pulse platform. A portable data acquisition module was used to quantify the voltage generated by the piezoelectric layers.The finite element model was built in ANSYS software. The beam and piezoelectric layers were modeled by twenty node elements with an additional electric degree of freedom for piezoelectric elements. A full piezoelectric matrix was used in the finite element analysis instead of a one-dimensional piezoelectric effect, which dominates in many analytical approaches. It allowed building a more accurate model of the system. The experimental tests and finite element method simulations were performed and acquired results were compared. The characteristics of voltage amplitude in the time and frequency domain were shown and discussed.


2019 ◽  
Vol 8 (4) ◽  
pp. 6332-6337

This paper reviews the piezoelectric energy harvesting from mechanical vibration. The recent development in the microelectronic devices and wireless sensor networks (WSNs) requires continuous power source for better performance. Many researchers have been done to develop a permanent portable power source for microelectronic devices. Micro energy harvesting (MEH) consists of two basic elements; freely available energy and transducer. Energy is everywhere around us in different forms. The energy conversion ability of piezoelectric energy harvester is high among different MEH techniques. A cantilever type piezoelectric energy harvester under different shapes is mostly studied in the last few years. The output of piezoelectric harvester depends upon the deflection produced, more deflection led to more electrical output. The deflection in cantilever beam under different shapes is different. This review paper presents a comparison of different piezoelectric cantilever beam shapes and output generated analyzed in the last decade.


2017 ◽  
Author(s):  
Arthur Guilherme Mereles ◽  
Marcus Varanis ◽  
José M. Balthazar ◽  
Angelo M. Tusset ◽  
Rodrigo Rocha ◽  
...  

Author(s):  
Ming Hui Yao ◽  
Peng Fei Liu ◽  
Wei Zhang ◽  
Dong Xing Cao

This paper presents an experimental investigation on the bistable piezoelectric electromagnetic combined energy harvester based on vibration. The end of the piezoelectric cantilever beam has a tip magnet. The opposite of the piezoelectric cantilever beam has a coil, a spring and a magnet. The power generation efficiency and dynamic behaviors for three different kinds of the piezoelectric cantilever beam structures are experimentally studied, such as the conventional piezoelectric cantilever beam, the bistable piezoelectric cantilever beam introduced spring and magnet, and the bistable piezoelectric cantilever beam introduced spring, magnet and coil. Experimental results show that the introduction of the spring and magnet improves the maximum output voltage and broaden the effective frequency bandwidth. The power generation efficiency of the system is improved by adding the coil. Complicated nonlinear dynamic behaviors occur in the system, when the spring and the magnet are introduced. These nonlinear dynamic behaviors broaden the effective frequency bandwidth.


Sign in / Sign up

Export Citation Format

Share Document