Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata

Mycorrhiza ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Awagul Awaydul ◽  
Wanying Zhu ◽  
Yongge Yuan ◽  
Jing Xiao ◽  
Hao Hu ◽  
...  
2021 ◽  
pp. 1-24
Author(s):  
Chad F. Hammer ◽  
John S. Gunn

Abstract Non-native invasive plant species are a major cause of ecosystem degradation and impairment of ecosystem service benefits in the United States. Forested riparian areas provide many ecosystem service benefits and are vital to maintaining water quality of streams and rivers. These systems are also vulnerable to natural disturbances and invasion by non-native plants. We assessed whether planting native trees on disturbed riparian sites may increase biotic resistance to invasive plant establishment in central Vermont in the northeastern United States. The density (stems/m2) of invasive stems was higher in non-planted sites (x̄=4.1 stems/m2) compared to planted sites (x̄=1.3 stems/m2). More than 90% of the invasive plants were Japanese knotweed (Fallopia japonica). There were no significant differences in total stem density of native vegetation between planted and non-planted sites. Other measured response variables such as native tree regeneration, species diversity, soil properties and soil function showed no significant differences or trends in the paired riparian study sites. The results of this case study indicate that tree planting in disturbed riparian forest areas may assist conservation efforts by minimizing the risk of invasive plant colonization.


2007 ◽  
Vol 2 (2) ◽  
pp. 196-204 ◽  
Author(s):  
Hua Huang ◽  
Shuiliang Guo ◽  
Guoqi Chen

2021 ◽  
Vol 25 ◽  
Author(s):  
Na Liu ◽  
Meina Song ◽  
Yulin Sun ◽  
Fengying Yang ◽  
Haina Yu ◽  
...  

: One new eudesmane sesquiterpene (1) and one new chromolaevane sesquiterpene (2), along with 19 known compounds, have been isolated from the invasive plant Solidago canadensis. Their structures were established by spectroscopic means including 1D/2D-NMR and HR-ESIMS analyses. Compounds 10 and 12, in combination with fluconazole, showed significant activity in an in vitro synergistic antifungal assay against Candida albicans, with FIC values of <0.15625 and <0.28125, respectively. Meanwhile, the allelopathic effects of these sesquiterpenes on Arabidopsis seed germination were also tested. Compounds 5, 7, 17 and 18 retarded the seed germination of Arabidopsis with IC50 values ranging from 9.1 to 41 μg/mL, while other compounds showed no obvious inhibitory effects.


The Condor ◽  
2021 ◽  
Author(s):  
Douglas W Tallamy ◽  
W Gregory Shriver

Abstract A flurry of recently published studies indicates that both insects and birds have experienced wide-scale population declines in the last several decades. Curiously, whether insect and bird declines are causally linked has received little empirical attention. Here, we hypothesize that insect declines are an important factor contributing to the decline of insectivorous birds. We further suggest that insect populations essential to insectivorous birds decline whenever non-native lumber, ornamental, or invasive plant species replace native plant communities. We support our hypothesis by reviewing studies that show (1) due to host plant specialization, insect herbivores typically do poorly on non-native plants; (2) birds are often food limited; (3) populations of insectivorous bird species fluctuate with the supply of essential insect prey; (4) not all arthropod prey support bird reproduction equally well; and (5) terrestrial birds for which insects are an essential source of food have declined by 2.9 billion individuals over the last 50 years, while terrestrial birds that do not depend on insects during their life history have gained by 26.2 million individuals, a 111-fold difference. Understanding the consequences of insect declines, particularly as they affect charismatic animals like birds, may motivate land managers, homeowners, and restoration ecologists to take actions that reverse these declines by favoring the native plant species that support insect herbivores most productively.


2021 ◽  
Author(s):  
◽  
Justyna Giejsztowt

<p>Drivers of global change have direct impacts on the structure of communities and functioning of ecosystems, and interactions between drivers may buffer or exacerbate these direct effects. Interactions among drivers can lead to complex non-linear outcomes for ecosystems, communities and species, but are infrequently quantified. Through a combination of experimental, observational and modelling approaches, I address critical gaps in our understanding of the interactive effects of climate change and plant invasion, using Tongariro National Park (TNP; New Zealand) as a model. TNP is an alpine ecosystem of cultural significance which hosts a unique flora with high rates of endemism. TNP is invaded by the perennial shrub Calluna vulgaris (L.) Hull. My objectives were to: 1) determine whether species-specific phenological shifts have the potential to alter the reproductive capacity of native plants in landscapes affected by invasion; 2) determine whether the effect of invasion intensity on the Species Area Relationship (SAR) of native alpine plant species is influenced by environmental stress; 3) develop a novel modelling framework that would account for density-dependent competitive interactions between native species and C. vulgaris and implement it to determine the combined risk of climate change and plant invasion on the distribution of native plant species; and 4) explore the possible mechanisms leading to a discrepancy in C. vulgaris invasion success on the North and South Islands of New Zealand. I show that species-specific phenological responses to climate warming increase the flowering overlap between a native and an invasive plant. I then show that competition for pollination with the invader decreases the sexual reproduction of the native in some landscapes. I therefore illustrate a previously undescribed interaction between climate warming and plant invasion where the effects of competition for pollination with an invader on the sexual reproduction of the native may be exacerbated by climate warming. Furthermore, I describe a previously unknown pattern of changing invasive plant impact on SAR along an environmental stress gradient. Namely, I demonstrate that interactions between an invasive plant and local native plant species richness become increasingly facilitative along elevational gradients and that the strength of plant interactions is dependent on invader biomass. I then show that the consequences of changing plant interactions at a local scale for the slope of SAR is dependent on the pervasion of the invader. Next, I demonstrate that the inclusion of invasive species density data in distribution models for a native plant leads to greater reductions in predicted native plant distribution and density under future climate change scenarios relative to models based on climate suitability alone. Finally, I find no evidence for large-scale climatic, edaphic, and vegetative limitations to invasion by C. vulgaris on either the North and South Islands of New Zealand. Instead, my results suggest that discrepancies in invasive spread between islands may be driven by human activity: C. vulgaris is associated with the same levels of human disturbance on both islands despite differences in the presence of these conditions between then islands. Altogether, these results show that interactive effects between drivers on biodiversity and ecosystem dynamics are frequently not additive or linear. Therefore, accurate predictions of global change impacts on community structure and ecosystems function require experiments and models which include of interactions among drivers such as climate change and species invasion. These results are pertinent to effective conservation management as most landscapes are concurrently affected by multiple drivers of global environmental change.</p>


Sign in / Sign up

Export Citation Format

Share Document