Oscillating glucose and constant high glucose induce endoglin expression in endothelial cells: the role of oxidative stress

2014 ◽  
Vol 52 (3) ◽  
pp. 505-512 ◽  
Author(s):  
Lucia La Sala ◽  
Gemma Pujadas ◽  
Valeria De Nigris ◽  
Silvia Canivell ◽  
Anna Novials ◽  
...  
2015 ◽  
Vol 35 (1) ◽  
pp. 364-373 ◽  
Author(s):  
Preeti Kanikarla-Marie ◽  
Sushil K. Jain

Background/Aims: The incidence of developing microvascular dysfunction is significantly higher in type 1 diabetic (T1D) patients. Hyperketonemia (acetoacetate, β-hydroxybutyrate) is frequently found along with hyperglycemia in T1D. Whether hyperketonemia per se contributes to the excess oxidative stress and cellular injury observed in T1D is not known. Methods: HUVEC were treated with ketones in the presence or absence of high glucose for 24 h. NOX4 siRNA was used to specifically knockdown NOX4 expression in HUVEC. Results: Ketones alone or in combination with high glucose treatment cause a significant increase in oxidative stress, ICAM-1, and monocyte adhesivity to HUVEC. Using an antisense approach, we show that ketone induced increases in ROS, ICAM-1 expression, and monocyte adhesion in endothelial cells were prevented in NOX4 knockdown cells. Conclusion: This study reports that elevated levels of ketones upregulate NOX, contributing to increased oxidative stress, ICAM-1 levels, and cellular dysfunction. This provides a novel biochemical mechanism that elucidates the role of hyperketonemia in the excess cellular injury in T1D. New drugs targeting inhibition of NOX seems promising in preventing higher risk of complications associated with T1D.


Diabetes ◽  
2007 ◽  
Vol 56 (11) ◽  
pp. 2715-2721 ◽  
Author(s):  
C. Wadham ◽  
A. Parker ◽  
L. Wang ◽  
P. Xia

2007 ◽  
Vol 179 (4) ◽  
pp. 747-760 ◽  
Author(s):  
Angelika Kümin ◽  
Matthias Schäfer ◽  
Nikolas Epp ◽  
Philippe Bugnon ◽  
Christiane Born-Berclaz ◽  
...  

Peroxiredoxin 6 (Prdx6) is a cytoprotective enzyme with largely unknown in vivo functions. Here, we use Prdx6 knockout mice to determine its role in UV protection and wound healing. UV-mediated keratinocyte apoptosis is enhanced in Prdx6-deficient mice. Upon skin injury, we observe a severe hemorrhage in the granulation tissue of knockout animals, which correlates with the extent of oxidative stress. At the ultrastructural level endothelial cells appear highly damaged, and their rate of apoptosis is enhanced. Knock-down of Prdx6 in cultured endothelial cells also increases their susceptibility to oxidative stress, thus confirming the sensitivity of this cell type to loss of Prdx6. Wound healing studies in bone marrow chimeric mice demonstrate that Prdx6-deficient inflammatory and endothelial cells contribute to the hemorrhage phenotype. These results provide insight into the cross-talk between hematopoietic and resident cells at the wound site and the role of reactive oxygen species in this interplay.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Xinyu Wang ◽  
James Bynum ◽  
Salomon Stavchansky ◽  
Michael Dubick ◽  
Robert Hackman ◽  
...  

2007 ◽  
Vol 566 (1-3) ◽  
pp. 1-10 ◽  
Author(s):  
Hiroshi Tsuneki ◽  
Naoto Sekizaki ◽  
Takashi Suzuki ◽  
Shinjiro Kobayashi ◽  
Tsutomu Wada ◽  
...  

2007 ◽  
Vol 67 (24) ◽  
pp. 11906-11913 ◽  
Author(s):  
L.-F. Dong ◽  
E. Swettenham ◽  
J. Eliasson ◽  
X.-F. Wang ◽  
M. Gold ◽  
...  

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Christopher J Dougherty ◽  
Howard Prentice ◽  
Kathleen Dorey ◽  
Keith A Webster ◽  
Janet C Blanks

Loss of pericytes is a critical event early in the progression of microvascular dysfunction in diabetic retinopathy. Pericyte loss may be linked to high glucose mediated reactive oxygen species generation, blocking N-cadherin trafficking to the endothelial cell surface preventing pericyte recruitment and vessel stabilization. Hydrogen peroxide has been identified as a major free radical produced during high glucose exposure in endothelial cells. The goal of this research is to determine if tissue-specific hypoxia-regulated expression of a mitochondria-targeted catalase can prevent or limit RF/6A microvascular endothelial cell apoptosis and decrease vascular permeability by limiting cellular oxidative stress. For the development of tissue-specific and hypoxia-enhanced expression vectors, promoters were constructed with nine tandem combinations of HREs. This 9x HRE oligomer enhancer was inserted together into a pGL3 firefly luciferase plasmid with the Tie2( short ) promoter for endothelial-specific expression. The 9xHRE-Tie2( sh ) promoter construct was highly selective for RF/6A cells producing a basal amount of mitochondria-targeted catalase equivalent to the Tie2( short ) promoter alone. In response to hypoxia ( pO 2 = 1% ), the 9xHRE-Tie2( short ) promoter showed a 21-fold hypoxia-inducible activation similar in strength to the CMV promoter , measured by dual luciferase assay. The hybrid promoters were incorporated into a replication deficient AAV delivery system for apoptosis and cell culture based endothelial permeability assays. In preliminary assays using RF/6A microvascular endothelial cells, apoptosis was reduced by 58% and permeability was reduced by 46%. The results suggest that mitochondria-targeted catalase protects RF/6A microvascular endothelial cells from apoptosis and reduces endothelial permeability in a high-glucose, low-oxygen environment.


Sign in / Sign up

Export Citation Format

Share Document