Abstract 235: Hypoxia Enhanced Delivery of Mitochondria-Targeted Catalase Protects Choroid Retinal Microvascular Endothelial Cells from Oxidative Stress

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Christopher J Dougherty ◽  
Howard Prentice ◽  
Kathleen Dorey ◽  
Keith A Webster ◽  
Janet C Blanks

Loss of pericytes is a critical event early in the progression of microvascular dysfunction in diabetic retinopathy. Pericyte loss may be linked to high glucose mediated reactive oxygen species generation, blocking N-cadherin trafficking to the endothelial cell surface preventing pericyte recruitment and vessel stabilization. Hydrogen peroxide has been identified as a major free radical produced during high glucose exposure in endothelial cells. The goal of this research is to determine if tissue-specific hypoxia-regulated expression of a mitochondria-targeted catalase can prevent or limit RF/6A microvascular endothelial cell apoptosis and decrease vascular permeability by limiting cellular oxidative stress. For the development of tissue-specific and hypoxia-enhanced expression vectors, promoters were constructed with nine tandem combinations of HREs. This 9x HRE oligomer enhancer was inserted together into a pGL3 firefly luciferase plasmid with the Tie2( short ) promoter for endothelial-specific expression. The 9xHRE-Tie2( sh ) promoter construct was highly selective for RF/6A cells producing a basal amount of mitochondria-targeted catalase equivalent to the Tie2( short ) promoter alone. In response to hypoxia ( pO 2 = 1% ), the 9xHRE-Tie2( short ) promoter showed a 21-fold hypoxia-inducible activation similar in strength to the CMV promoter , measured by dual luciferase assay. The hybrid promoters were incorporated into a replication deficient AAV delivery system for apoptosis and cell culture based endothelial permeability assays. In preliminary assays using RF/6A microvascular endothelial cells, apoptosis was reduced by 58% and permeability was reduced by 46%. The results suggest that mitochondria-targeted catalase protects RF/6A microvascular endothelial cells from apoptosis and reduces endothelial permeability in a high-glucose, low-oxygen environment.

1993 ◽  
Vol 264 (2) ◽  
pp. H639-H652 ◽  
Author(s):  
M. Nishida ◽  
W. W. Carley ◽  
M. E. Gerritsen ◽  
O. Ellingsen ◽  
R. A. Kelly ◽  
...  

Although reciprocal intercellular signaling may occur between endocardial or microvascular endothelium and cardiac myocytes, suitable in vitro models have not been well characterized. In this report, we describe the isolation and primary culture of cardiac microvascular endothelial cells (CMEC) from both adult rat and human ventricular tissue. Differential uptake of fluorescently labeled acetylated low-density lipoprotein (Ac-LDL) indicated that primary isolates of rat CMEC were quite homogeneous, unlike primary isolates of human ventricular tissue, which required cell sorting based on Ac-LDL uptake to create endothelial cell-enriched primary cultures. The endothelial phenotype of both primary isolates and postsort subcultured CMEC and their microvascular origin were determined by characteristic histochemical staining for a number of endothelial cell-specific markers, by the absence of cells with fibroblast or pericyte-specific cell surface antigens, and by rapid tube formation on purified basement membrane preparations. Importantly, [3H]-thymidine uptake was increased 2.3-fold in subconfluent rat microvascular endothelial cells 3 days after coculture with adult rat ventricular myocytes because of release of an endothelial cell mitogen(s) into the extracellular matrix, resulting in a 68% increase in cell number compared with CMEC in monoculture. Thus biologically relevant cell-to-cell interactions can be modeled with this in vitro system.


APOPTOSIS ◽  
2017 ◽  
Vol 22 (12) ◽  
pp. 1510-1523 ◽  
Author(s):  
Zheng Zhang ◽  
Shenwei Zhang ◽  
Yong Wang ◽  
Ming Yang ◽  
Ning Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document