scholarly journals Erratum to: Experimental Investigation of Seepage Properties of Fractured Rocks Under Different Confining Pressures

2015 ◽  
Vol 48 (5) ◽  
pp. 2183-2183 ◽  
Author(s):  
D. Ma ◽  
X. X. Miao ◽  
Z. Q. Chen ◽  
X. B. Mao
Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Meng Li ◽  
Jixiong Zhang ◽  
Weiqing Zhang ◽  
Ailing Li ◽  
Wei Yin

Induced by coal mining, the fractures constantly occur in geologic strata until failure occurs, which provide channels for water flow. Therefore, it is essential to investigate the permeability evolution of rocks under load. Borehole sampling was conducted in a bedrock layer beneath an aquifer, and the permeability evolution of sandstone specimens under different confining pressures was tested in rock mechanics testing laboratories. The results indicated that the permeability gradually decreases with the increasing confining pressures, while the peak strength increases with the increase of confining pressures. The minimum and maximum permeabilities occurred in the sandstone specimens that were subjected to elastic deformation and strain-softening stages, respectively. The failure, and maximum permeability, of these sandstone specimens did not occur simultaneously. To prevent the flow channel being formed due to the development and failure of rock fractures, a method of backfill gob was proposed and also the influence of backfill on fracture development was discussed.


2020 ◽  
Vol 20 (9) ◽  
pp. 04020160 ◽  
Author(s):  
Xiaobo Zhang ◽  
Huihui Chen ◽  
Chi Yao ◽  
Jianhua Yang ◽  
Shuihua Jiang ◽  
...  

IEEE Access ◽  
2016 ◽  
Vol 4 ◽  
pp. 5710-5720 ◽  
Author(s):  
Xuefeng Li ◽  
Shibo Wang ◽  
Reza Malekian ◽  
Shangqing Hao ◽  
Zhixiong Li

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaobo Zhang ◽  
Zuhao Xia ◽  
Chi Yao ◽  
Jianhua Yang ◽  
Mingdong Yang

Excavation in rock masses always encounters safety problems from rock fracture seepage in water-rich areas, which needs to be paid much attention, especially for fractured rocks under complicated stress state. For this reason, the permeability of fractured sandstone and granite is experimentally investigated under cyclic loading-unloading confining stress and axial stress. The variation of permeability coefficient and seepage flow with increasing and decreasing the confining stress and axial stress are comprehensively analyzed. Results show that the changing patterns of permeability with loading-unloading cycles of confining stress for both fractured sandstone and granite are similar. The permeability is most sensitive to the initial loading-unloading stages. After several loading-unloading cycles, the confining stress has little effect on permeability. The seepage flow decreases as the confining stress is unloaded to the same level in the loading process, indicating a hysteresis effect on the recovery of seepage capacity. The seepage properties under cyclic loading-unloading the axial stress are quite different from those under the confining stress. The permeability of fractured sandstone is most sensitive to the first cycle of loading-unloading of axial stress. The irrecoverable shear slide between fractures under the axial stress causes dilatancy or contraction, which makes the permeability coefficient to consecutively decrease at the subsequent cycles. The permeability of granite first decreases during the first loading of axial stress, while this trend is disordered at the subsequent stages no matter loading or unloading the axial stress. This is because of the accumulation of breakage fragments between fractures, which further disturbs the seepage flow. These findings may be useful for further understanding the seepage properties of fractured granite and sandstone under complex loading-unloading history.


Sign in / Sign up

Export Citation Format

Share Document