Estimation of Fracture Orientation Distributions from a Sampling Window Based on Geometric Probabilistic Method

Author(s):  
Qi Zhang ◽  
Xiaojun Wang ◽  
Lei He ◽  
Longgang Tian
Author(s):  
Jonathan Ogle ◽  
Daniel Powell ◽  
Eric Amerling ◽  
Detlef Matthias Smilgies ◽  
Luisa Whittaker-Brooks

<p>Thin film materials have become increasingly complex in morphological and structural design. When characterizing the structure of these films, a crucial field of study is the role that crystallite orientation plays in giving rise to unique electronic properties. It is therefore important to have a comparative tool for understanding differences in crystallite orientation within a thin film, and also the ability to compare the structural orientation between different thin films. Herein, we designed a new method dubbed the mosaicity factor (MF) to quantify crystallite orientation in thin films using grazing incidence wide-angle X-ray scattering (GIWAXS) patterns. This method for quantifying the orientation of thin films overcomes many limitations inherent in previous approaches such as noise sensitivity, the ability to compare orientation distributions along different axes, and the ability to quantify multiple crystallite orientations observed within the same Miller index. Following the presentation of MF, we proceed to discussing case studies to show the efficacy and range of application available for the use of MF. These studies show how using the MF approach yields quantitative orientation information for various materials assembled on a substrate.<b></b></p>


2020 ◽  
Vol 2020 (9) ◽  
pp. 29-33
Author(s):  
Sergey Bulatov

The paper purpose is the effectiveness estimation in the technological equipment use, taking into account its reliability and productivity for defective transmission units of buses. The problem consists in the determination of time to be spent on repair of bus transmission units taking into account technological equipment reliability. In the paper there is used a probabilistic method for the prediction bus transmission units, and also a method of the dynamics of averages which allow ensuring minimum of costs for units downtime during repair and equipment cost. The need for repair of transmission units (gear box) arises on an average after 650 hours, the average productivity of the bench makes 4.2 bus / hour. The bench fails on the average after 4600 hours of work, the average time of the bench makes 2 hours. In such a way the solution of the problem specified allows analyzing the necessity of time decrease for transmission unit repair to avoid long downtimes of buses in repair areas without negative impact upon high repair quality and safety during the further operation.


Author(s):  
Bodan Arsovski

Abstract Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least $$|S| - m\ln |G|$$ elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least $$|G{|^{1 - c{ \in ^l}}}$$ for certain c=c(m) and $$ \in = \in (m) < 1$$ ; we use the probabilistic method to give sharper values of c(m) and $$ \in (m)$$ in the case when G is a vector space; and we give new proofs of related known results.


2021 ◽  
Vol 1745 (1) ◽  
pp. 012086
Author(s):  
V V Salmin ◽  
I S Tkachenko ◽  
S S Volgin ◽  
M A Ivanushkin

2021 ◽  
Vol 9 (6) ◽  
pp. 667
Author(s):  
Dracos Vassalos ◽  
M. P. Mujeeb-Ahmed

The paper provides a full description and explanation of the probabilistic method for ship damage stability assessment from its conception to date with focus on the probability of survival (s-factor), explaining pertinent assumptions and limitations and describing its evolution for specific application to passenger ships, using contemporary numerical and experimental tools and data. It also provides comparisons in results between statistical and direct approaches and makes recommendations on how these can be reconciled with better understanding of the implicit assumptions in the approach for use in ship design and operation. Evolution over the latter years to support pertinent regulatory developments relating to flooding risk (safety level) assessment as well as research in this direction with a focus on passenger ships, have created a new focus that combines all flooding hazards (collision, bottom and side groundings) to assess potential loss of life as a means of guiding further research and developments on damage stability for this ship type. The paper concludes by providing recommendations on the way forward for ship damage stability and flooding risk assessment.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 174
Author(s):  
Wenxiao Zhao

The stochastic approximation algorithm (SAA), starting from the pioneer work by Robbins and Monro in 1950s, has been successfully applied in systems and control, statistics, machine learning, and so forth. In this paper, we will review the development of SAA in China, to be specific, the stochastic approximation algorithm with expanding truncations (SAAWET) developed by Han-Fu Chen and his colleagues during the past 35 years. We first review the historical development for the centralized algorithm including the probabilistic method (PM) and the ordinary differential equation (ODE) method for SAA and the trajectory-subsequence method for SAAWET. Then, we will give an application example of SAAWET to the recursive principal component analysis. We will also introduce the recent progress on SAAWET in a networked and distributed setting, named the distributed SAAWET (DSAAWET).


Sign in / Sign up

Export Citation Format

Share Document