scholarly journals Special issue on machine learning algorithms for internet of things, fog computing and cloud computing

Computing ◽  
2018 ◽  
Vol 100 (8) ◽  
pp. 757-758
Author(s):  
Gunasekaran Manogaran ◽  
Naveen Chilamkurti ◽  
Ching-Hsien Hsu
2018 ◽  
Vol 22 (3) ◽  
pp. 199-200 ◽  
Author(s):  
Gunasekaran Manogaran ◽  
Naveen Chilamkurti ◽  
Ching-Hsien Hsu

Telecom IT ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 50-55
Author(s):  
D. Saharov ◽  
D. Kozlov

The article deals with the СoAP Protocol that regulates the transmission and reception of information traf-fic by terminal devices in IoT networks. The article describes a model for detecting abnormal traffic in 5G/IoT networks using machine learning algorithms, as well as the main methods for solving this prob-lem. The relevance of the article is due to the wide spread of the Internet of things and the upcoming update of mobile networks to the 5g generation.


2021 ◽  
pp. 307-327
Author(s):  
Mohammed H. Alsharif ◽  
Anabi Hilary Kelechi ◽  
Imran Khan ◽  
Mahmoud A. Albreem ◽  
Abu Jahid ◽  
...  

2020 ◽  
Vol 17 (8) ◽  
pp. 3765-3769
Author(s):  
N. P. Ponnuviji ◽  
M. Vigilson Prem

Cloud Computing has revolutionized the Information Technology by allowing the users to use variety number of resources in different applications in a less expensive manner. The resources are allocated to access by providing scalability flexible on-demand access in a virtual manner, reduced maintenance with less infrastructure cost. The majority of resources are handled and managed by the organizations over the internet by using different standards and formats of the networking protocols. Various research and statistics have proved that the available and existing technologies are prone to threats and vulnerabilities in the protocols legacy in the form of bugs that pave way for intrusion in different ways by the attackers. The most common among attacks is the Distributed Denial of Service (DDoS) attack. This attack targets the cloud’s performance and cause serious damage to the entire cloud computing environment. In the DDoS attack scenario, the compromised computers are targeted. The attacks are done by transmitting a large number of packets injected with known and unknown bugs to a server. A huge portion of the network bandwidth of the users’ cloud infrastructure is affected by consuming enormous time of their servers. In this paper, we have proposed a DDoS Attack detection scheme based on Random Forest algorithm to mitigate the DDoS threat. This algorithm is used along with the signature detection techniques and generates a decision tree. This helps in the detection of signature attacks for the DDoS flooding attacks. We have also used other machine learning algorithms and analyzed based on the yielded results.


2021 ◽  
Vol 30 (04) ◽  
pp. 2150020
Author(s):  
Luke Holbrook ◽  
Miltiadis Alamaniotis

With the increase of cyber-attacks on millions of Internet of Things (IoT) devices, the poor network security measures on those devices are the main source of the problem. This article aims to study a number of these machine learning algorithms available for their effectiveness in detecting malware in consumer internet of things devices. In particular, the Support Vector Machines (SVM), Random Forest, and Deep Neural Network (DNN) algorithms are utilized for a benchmark with a set of test data and compared as tools in safeguarding the deployment for IoT security. Test results on a set of 4 IoT devices exhibited that all three tested algorithms presented here detect the network anomalies with high accuracy. However, the deep neural network provides the highest coefficient of determination R2, and hence, it is identified as the most precise among the tested algorithms concerning the security of IoT devices based on the data sets we have undertaken.


Sign in / Sign up

Export Citation Format

Share Document