Machine learning algorithms for smart data analysis in the Internet of things: an overview

2021 ◽  
pp. 307-327
Author(s):  
Mohammed H. Alsharif ◽  
Anabi Hilary Kelechi ◽  
Imran Khan ◽  
Mahmoud A. Albreem ◽  
Abu Jahid ◽  
...  
Telecom IT ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 50-55
Author(s):  
D. Saharov ◽  
D. Kozlov

The article deals with the СoAP Protocol that regulates the transmission and reception of information traf-fic by terminal devices in IoT networks. The article describes a model for detecting abnormal traffic in 5G/IoT networks using machine learning algorithms, as well as the main methods for solving this prob-lem. The relevance of the article is due to the wide spread of the Internet of things and the upcoming update of mobile networks to the 5g generation.


10.6036/10342 ◽  
2021 ◽  
Vol 96 (6) ◽  
pp. 561-562
Author(s):  
MIKEL NIÑO

The Smart Industry has been developing has been developing at an accelerated pace since the beginning of the last decade, driven by of the last decade, driven by the by the emergence of technologies such as the Internet of Things, Compute of Things, Cloud Computing and Big Data Cloud Computing and Big Data technologies, as well as their connection and Big Data technologies, as well as their connection with machine learning algorithms for predictive data analysis [1] of data [1].


2021 ◽  
Author(s):  
Jehad Ali ◽  
Byeong-hee Roh

Separating data and control planes by Software-Defined Networking (SDN) not only handles networks centrally and smartly. However, through implementing innovative protocols by centralized controllers, it also contributes flexibility to computer networks. The Internet-of-Things (IoT) and the implementation of 5G have increased the number of heterogeneous connected devices, creating a huge amount of data. Hence, the incorporation of Artificial Intelligence (AI) and Machine Learning is significant. Thanks to SDN controllers, which are programmable and versatile enough to incorporate machine learning algorithms to handle the underlying networks while keeping the network abstracted from controller applications. In this chapter, a software-defined networking management system powered by AI (SDNMS-PAI) is proposed for end-to-end (E2E) heterogeneous networks. By applying artificial intelligence to the controller, we will demonstrate this regarding E2E resource management. SDNMS-PAI provides an architecture with a global view of the underlying network and manages the E2E heterogeneous networks with AI learning.


2020 ◽  
Vol 10 (1) ◽  
pp. 422-430
Author(s):  
Faris Mohammad Abd ◽  
Mehdi Ebady Manaa

AbstractOver the last few years, the huge amount of data represented a major obstacle to data analysis. Big data implies that the volume of data undergoes a faster progress than computational speeds, thereby demanding a larger data storage capacity. The Internet of Things (IoT) is a main source of data that is closely related to big data, as the former extends to a variety of fields such as healthcare, entertainment, and disaster control. Despite the different advantages associated with the composition of Big Data analytics and IoT, there are a number of complex difficulties and issues involved that need to be resolved and managed to ensure an accurate data analysis. Some of these solutions include the utilization of map-reduce techniques, processing, and large data scale, particularly for the relatively less time that this method requires to process large data from the Internet of Things. Machine learning algorithms of this kind are often implemented in the healthcare sector. Medical facilities need to be advanced so that more appropriate decisions can be made in terms of patient diagnosis and treatment options. In this work, two datasets have been used: the first set, used in the prediction of heart diseases, obtained an accuracy rate of 84.5 for RF and 83 for J48, whereas the second dataset is related to weather stations (automated sensors) and obtained accuracy rates of 88.5 and 86.5 for RF and J48, respectively.


2021 ◽  
Vol 3 (3) ◽  
pp. 128-145
Author(s):  
R. Valanarasu

Recently, IoT is referred as a descriptive term for the idea that everything in the world should be connected to the internet. Healthcare and social goods, industrial automation, and energy are just a few of the areas where the Internet of Things applications are widely used. Applications are becoming smarter and linked devices are enabling their exploitation in every element of the Internet of Things [IoT]. Machine Learning (ML) methods are used to improve an application's intelligence and capabilities by analysing the large amounts of data. ML and IoT have been used for smart transportation, which has gained the increasing research interest. This research covers a range of Internet of Things (IoT) applications that use suitable machine learning techniques to enhance efficiency and reliability in the intelligent automation sector. Furthermore, this research article examines and identifies various applications such as energy, high-quality sensors associated, and G-map associated appropriate applications for IoT. In addition to that, the proposed research work includes comparisons and tabulations of several different machine learning algorithms for IoT applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Mohamed Ali Mohamed ◽  
Ibrahim Mahmoud El-henawy ◽  
Ahmad Salah

Sensors, satellites, mobile devices, social media, e-commerce, and the Internet, among others, saturate us with data. The Internet of Things, in particular, enables massive amounts of data to be generated more quickly. The Internet of Things is a term that describes the process of connecting computers, smart devices, and other data-generating equipment to a network and transmitting data. As a result, data is produced and updated on a regular basis to reflect changes in all areas and activities. As a consequence of this exponential growth of data, a new term and idea known as big data have been coined. Big data is required to illuminate the relationships between things, forecast future trends, and provide more information to decision-makers. The major problem at present, however, is how to effectively collect and evaluate massive amounts of diverse and complicated data. In some sectors or applications, machine learning models are the most frequently utilized methods for interpreting and analyzing data and obtaining important information. On their own, traditional machine learning methods are unable to successfully handle large data problems. This article gives an introduction to Spark architecture as a platform that machine learning methods may utilize to address issues regarding the design and execution of large data systems. This article focuses on three machine learning types, including regression, classification, and clustering, and how they can be applied on top of the Spark platform.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 88 ◽  
Author(s):  
Mohammed H. Alsharif ◽  
Anabi Hilary Kelechi ◽  
Khalid Yahya ◽  
Shehzad Ashraf Chaudhry

Machine learning techniques will contribution towards making Internet of Things (IoT) symmetric applications among the most significant sources of new data in the future. In this context, network systems are endowed with the capacity to access varieties of experimental symmetric data across a plethora of network devices, study the data information, obtain knowledge, and make informed decisions based on the dataset at its disposal. This study is limited to supervised and unsupervised machine learning (ML) techniques, regarded as the bedrock of the IoT smart data analysis. This study includes reviews and discussions of substantial issues related to supervised and unsupervised machine learning techniques, highlighting the advantages and limitations of each algorithm, and discusses the research trends and recommendations for further study.


2021 ◽  
Vol 31 (1) ◽  
pp. 1-14
Author(s):  
Firas Mohammed Aswad ◽  
Ali Noori Kareem ◽  
Ahmed Mahmood Khudhur ◽  
Bashar Ahmed Khalaf ◽  
Salama A. Mostafa

Abstract Floods are one of the most common natural disasters in the world that affect all aspects of life, including human beings, agriculture, industry, and education. Research for developing models of flood predictions has been ongoing for the past few years. These models are proposed and built-in proportion for risk reduction, policy proposition, loss of human lives, and property damages associated with floods. However, flood status prediction is a complex process and demands extensive analyses on the factors leading to the occurrence of flooding. Consequently, this research proposes an Internet of Things-based flood status prediction (IoT-FSP) model that is used to facilitate the prediction of the rivers flood situation. The IoT-FSP model applies the Internet of Things architecture to facilitate the flood data acquisition process and three machine learning (ML) algorithms, which are Decision Tree (DT), Decision Jungle, and Random Forest, for the flood prediction process. The IoT-FSP model is implemented in MATLAB and Simulink as development platforms. The results show that the IoT-FSP model successfully performs the data acquisition and prediction tasks and achieves an average accuracy of 85.72% for the three-fold cross-validation results. The research finding shows that the DT scores the highest accuracy of 93.22%, precision of 92.85, and recall of 92.81 among the three ML algorithms. The ability of the ML algorithm to handle multivariate outputs of 13 different flood textual statuses provides the means of manifesting explainable artificial intelligence and enables the IoT-FSP model to act as an early warning and flood monitoring system.


Sign in / Sign up

Export Citation Format

Share Document