scholarly journals The verb and noun test for peri-operative testing (VAN-POP): standardized language tests for navigated transcranial magnetic stimulation and direct electrical stimulation

2019 ◽  
Vol 162 (2) ◽  
pp. 397-406 ◽  
Author(s):  
Ann-Katrin Ohlerth ◽  
Antonio Valentin ◽  
Francesco Vergani ◽  
Keyoumars Ashkan ◽  
Roelien Bastiaanse

Abstract Background Protocols for intraoperative language mapping with direct electrical stimulation (DES) often include various language tasks triggering both nouns and verbs in sentences. Such protocols are not readily available for navigated transcranial magnetic stimulation (nTMS), where only single word object naming is generally used. Here, we present the development, norming, and standardization of the verb and noun test for peri-operative testing (VAN-POP) that measures language skills more extensively. Methods The VAN-POP tests noun and verb retrieval in sentence context. Items are marked and balanced for several linguistic factors known to influence word retrieval. The VAN-POP was administered in English, German, and Dutch under conditions that are used for nTMS and DES paradigms. For each language, 30 speakers were tested. Results At least 50 items per task per language were named fluently and reached a high naming agreement. Conclusion The protocol proved to be suitable for pre- and intraoperative language mapping with nTMS and DES.

2020 ◽  
Vol 132 (4) ◽  
pp. 1033-1042 ◽  
Author(s):  
Nico Sollmann ◽  
Alessia Fratini ◽  
Haosu Zhang ◽  
Claus Zimmer ◽  
Bernhard Meyer ◽  
...  

OBJECTIVENavigated transcranial magnetic stimulation (nTMS) in combination with diffusion tensor imaging fiber tracking (DTI FT) is increasingly used to locate subcortical language-related pathways. The aim of this study was to establish nTMS-based DTI FT for preoperative risk stratification by evaluating associations between lesion-to-tract distances (LTDs) and aphasia and by determining a cut-off LTD value to prevent surgery-related permanent aphasia.METHODSFifty patients with left-hemispheric, language-eloquent brain tumors underwent preoperative nTMS language mapping and nTMS-based DTI FT, followed by tumor resection. nTMS-based DTI FT was performed with a predefined fractional anisotropy (FA) of 0.10, 0.15, 50% of the individual FA threshold (FAT), and 75% FAT (minimum fiber length [FL]: 100 mm). The arcuate fascicle (AF), superior longitudinal fascicle (SLF), inferior longitudinal fascicle (ILF), uncinate fascicle (UC), and frontooccipital fascicle (FoF) were identified in nTMS-based tractography, and minimum LTDs were measured between the lesion and the AF and between the lesion and the closest other subcortical language-related pathway (SLF, ILF, UC, or FoF). LTDs were then associated with the level of aphasia (no/transient or permanent surgery-related aphasia, according to follow-up examinations).RESULTSA significant difference in LTDs was observed between patients with no or only surgery-related transient impairment and those who developed surgery-related permanent aphasia with regard to the AF (FA = 0.10, p = 0.0321; FA = 0.15, p = 0.0143; FA = 50% FAT, p = 0.0106) as well as the closest other subcortical language-related pathway (FA = 0.10, p = 0.0182; FA = 0.15, p = 0.0200; FA = 50% FAT, p = 0.0077). Patients with surgery-related permanent aphasia showed the lowest LTDs in relation to these tracts. Thus, LTDs of ≥ 8 mm (AF) and ≥ 11 mm (SLF, ILF, UC, or FoF) were determined as cut-off values for surgery-related permanent aphasia.CONCLUSIONSnTMS-based DTI FT of subcortical language-related pathways seems suitable for risk stratification and prediction in patients suffering from language-eloquent brain tumors. Thus, the current role of nTMS-based DTI FT might be expanded, going beyond the level of being a mere tool for surgical planning and resection guidance.


2015 ◽  
Vol 123 (2) ◽  
pp. 314-324 ◽  
Author(s):  
Sebastian Ille ◽  
Nico Sollmann ◽  
Theresa Hauck ◽  
Stefanie Maurer ◽  
Noriko Tanigawa ◽  
...  

OBJECT Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. METHODS Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. RESULTS The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). CONCLUSIONS Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.


2021 ◽  
Vol 11 ◽  
Author(s):  
Alexander F. Haddad ◽  
Jacob S. Young ◽  
Mitchel S. Berger ◽  
Phiroz E. Tarapore

Preoperative mapping of cortical structures prior to neurosurgical intervention can provide a roadmap of the brain with which neurosurgeons can navigate critical cortical structures. In patients undergoing surgery for brain tumors, preoperative mapping allows for improved operative planning, patient risk stratification, and personalized preoperative patient counseling. Navigated transcranial magnetic stimulation (nTMS) is one modality that allows for highly accurate, image-guided, non-invasive stimulation of the brain, thus allowing for differentiation between eloquent and non-eloquent cortical regions. Motor mapping is the best validated application of nTMS, yielding reliable maps with an accuracy similar to intraoperative cortical mapping. Language mapping is also commonly performed, although nTMS language maps are not as highly concordant with direct intraoperative cortical stimulation maps as nTMS motor maps. Additionally, nTMS has been used to localize cortical regions involved in other functions such as facial recognition, calculation, higher-order motor processing, and visuospatial orientation. In this review, we evaluate the growing literature on the applications of nTMS in the preoperative setting. First, we analyze the evidence in support of the most common clinical applications. Then we identify usages that show promise but require further validation. We also discuss developing nTMS techniques that are still in the experimental stage, such as the use of nTMS to enhance postoperative recovery. Finally, we highlight practical considerations when utilizing nTMS and, importantly, its safety profile in neurosurgical patients. In so doing, we aim to provide a comprehensive review of the role of nTMS in the neurosurgical management of a patient with a brain tumor.


2021 ◽  
Vol 11 (9) ◽  
pp. 1190
Author(s):  
Ann-Katrin Ohlerth ◽  
Roelien Bastiaanse ◽  
Chiara Negwer ◽  
Nico Sollmann ◽  
Severin Schramm ◽  
...  

Preoperative language mapping with navigated transcranial magnetic stimulation (nTMS) is currently based on the disruption of performance during object naming. The resulting cortical language maps, however, lack accuracy when compared to intraoperative mapping. The question arises whether nTMS results can be improved, when another language task is considered, involving verb retrieval in sentence context. Twenty healthy German speakers were tested with object naming and a novel action naming task during nTMS language mapping. Error rates and categories in both hemispheres were compared. Action naming showed a significantly higher error rate than object naming in both hemispheres. Error category comparison revealed that this discrepancy stems from more lexico-semantic errors during action naming, indicating lexico-semantic retrieval of the verb being more affected than noun retrieval. In an area-wise comparison, higher error rates surfaced in multiple right-hemisphere areas, but only trends in the left ventral postcentral gyrus and middle superior temporal gyrus. Hesitation errors contributed significantly to the error count, but did not dull the mapping results. Inclusion of action naming coupled with a detailed error analysis may be favorable for nTMS mapping and ultimately improve accuracy in preoperative planning. Moreover, the results stress the recruitment of both left- and right-hemispheric areas during naming.


2013 ◽  
Vol 118 (1) ◽  
pp. 175-179 ◽  
Author(s):  
Nico Sollmann ◽  
Thomas Picht ◽  
Jyrki P. Mäkelä ◽  
Bernhard Meyer ◽  
Florian Ringel ◽  
...  

Up to now, navigated transcranial magnetic stimulation (nTMS) has been used for motor mapping in the vicinity of rolandic brain lesions. Recently, nTMS has also been suggested to be useful in mapping human language areas. The authors describe the case of a left-handed patient with a left-side glioblastoma within the opercular inferior frontal gyrus who presented with severe motor aphasia. Preoperative functional MRI (fMRI) indicated speech dominance of the right hemisphere and did not show any language-related activation in the vicinity of the tumor. Navigated TMS, however, showed a significantly higher rate of induced speech arrests for the left than for the right. Left-side direct cortical stimulation induced clear speech arrests during awake surgery. This case suggests that nTMS may be useful for preoperative speech mapping in tumors affecting the anatomy, vasculature, and brain oxygen levels and therefore impairing fMRI reliability.


Sign in / Sign up

Export Citation Format

Share Document