Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China

2012 ◽  
Vol 111 (3-4) ◽  
pp. 537-545 ◽  
Author(s):  
Zhongsheng Chen ◽  
Yaning Chen ◽  
Baofu Li
2013 ◽  
Vol 10 (7) ◽  
pp. 9477-9504 ◽  
Author(s):  
C. Zang ◽  
J. Liu ◽  
L. Jiang ◽  
D. Gerten

Abstract. Human activities and climate factors both affect the availability of water resources and the sustainability of water management. Especially in already dry regions, water has become more and more scarce with increasing requirements from growing population, economic development and diet shifts. Although progress has been made in understanding variability of runoff, the impacts of climate variability and human activities on flows of both green water (actual evapotranspiration) and blue water (discharge accumulated in the river network) remain less well understood. We study the spatial patterns of blue and green water flows and the impacts on them of human activities and climate variability as simulated by the Soil and Water Assessment Tool (SWAT) for an inland Heihe river basin located in Northwest China. The results show that total green and blue water flow increased from 1980 to 2005, mainly as a result of climate variability (upward precipitation trends). Direct human activities did not significantly change the total green and blue water flow. However, land use change led to a transformation of 206 million m3 from green to blue water flow, while farmland irrigation expansion resulted in a transformation of 66 million m3 from blue to green water flow. The synchronous climate variability caused an increase of green water flow by 469 million m3 and an increase of blue water flow by 146 million m3 at the river basin level, while the geographical distribution showed an uneven change even with reductions of water flows in western sub-basins at midstream. The results are helpful to benchmark the water resources in the context of global change in the inland river basins in China. This study also provides a general approach to investigate the impacts of historical human activities and climate variability on green and blue water flows at the river basin level.


2008 ◽  
Vol 352 (3-4) ◽  
pp. 239-249 ◽  
Author(s):  
Zhenmei Ma ◽  
Shaozhong Kang ◽  
Lu Zhang ◽  
Ling Tong ◽  
Xiaoling Su

2015 ◽  
Vol 46 (6) ◽  
pp. 1019-1036 ◽  
Author(s):  
Ye Zhu ◽  
Wen Wang ◽  
Yi Liu ◽  
Hongjie Wang

The impacts of climate variability and anthropogenic activities on hydrological processes have been of wide concern in the hydrology community during recent decades. In this study, specific investigations of individual impacts of climate variability and anthropogenic activities on runoff during 1964–2010 are conducted for the upper Huaihe River Basin at Huaibin (HB) and its five sub-catchments. The non-stationary relationship between precipitation and runoff was firstly analyzed, and according to change point detection results, long-term series for each catchment was divided into pre-change period and post-change period, respectively. Then, the climate variability and human activities that occurred in the whole HB catchment were analyzed. Finally, using two quantitative evaluation methods, the individual impacts of climate variability and human activities for each catchment were assessed. The results showed that for the whole HB catchment, runoff changes during the whole post-change period are mainly attributed to climate variability, as for its sub-catchments except the Xinxian catchment. As for decadal behaviors, runoff generally suffered more human-induced impacts in dry decades (1990s) than wet decades (1980s and 2000s). These results reflected the complex role of climate variability and human activities in influencing the runoff regime, which could be considered in local water resources management.


2013 ◽  
Vol 311 ◽  
pp. 117-122 ◽  
Author(s):  
A.-H. Fu ◽  
Y.N. Chen ◽  
W.H. Li ◽  
B.F. Li ◽  
Y.H. Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document