Characterization of the humoral immune response of experimentally infected and vaccinated pigs to swine influenza viral proteins

2005 ◽  
Vol 151 (1) ◽  
pp. 23-36 ◽  
Author(s):  
W.-I. Kim ◽  
W.-H. Wu ◽  
B. Janke ◽  
K.-J. Yoon
2009 ◽  
Vol 83 (7) ◽  
pp. 3228-3237 ◽  
Author(s):  
François-Loic Cosset ◽  
Philippe Marianneau ◽  
Geraldine Verney ◽  
Fabrice Gallais ◽  
Noel Tordo ◽  
...  

ABSTRACT The cell entry and humoral immune response of the human pathogen Lassa virus (LV), a biosafety level 4 (BSL4) Old World arenavirus, are not well characterized. LV pseudoparticles (LVpp) are a surrogate model system that has been used to decipher factors and routes involved in LV cell entry under BSL2 conditions. Here, we describe LVpp, which are highly infectious, with titers approaching those obtained with pseudoparticles displaying G protein of vesicular stomatitis virus and their the use for the characterization of LV cell entry and neutralization. Upon cell attachment, LVpp utilize endocytic vesicles for cell entry as described for many pH-dependent viruses. However, the fusion of the LV glycoproteins is activated at unusually low pH values, with optimal fusion occurring between pH 4.5 and 3, a pH range at which fusion characteristics of viral glycoproteins have so far remained largely unexplored. Consistent with a shifted pH optimum for fusion activation, we found wild-type LV and LVpp to display a remarkable resistance to exposure to low pH. Finally, LVpp allow the fast and quantifiable detection of neutralizing antibodies in human and animal sera and will thus facilitate the study of the humoral immune response in LV infections.


2001 ◽  
Vol 28 (5) ◽  
pp. 405-415 ◽  
Author(s):  
Mary Kate Morris ◽  
David A. Katzenstein ◽  
Dennis Israelski ◽  
Andrew Zolopa ◽  
R. Michael Hendry ◽  
...  

2003 ◽  
Vol 33 (12) ◽  
pp. 3232-3241 ◽  
Author(s):  
Anahit Ghochikyan ◽  
Vitaly Vasilevko ◽  
Irina Petrushina ◽  
Nina Movsesyan ◽  
Davit Babikyan ◽  
...  

1995 ◽  
Vol 7 (3) ◽  
pp. 305-312 ◽  
Author(s):  
Kyoung-Jin Yoon ◽  
Jeffrey J. Zimmerman ◽  
Sabrina L. Swenson ◽  
Michael J. McGinley ◽  
Ken A. Eernisse ◽  
...  

The development of the humoral immune response against porcine reproductive and respiratory syndrome (PRRS) virus was monitored by an indirect fluorescent antibody (IFA) test, immunoperoxidase monolayer assay (IPMA), enzyme-linked immunosorbent assay (ELISA), and serum virus neutralization (SVN) test over a 105-day period in 8 pigs experimentally infected with ATCC strain VR-2402. Specific antibodies against PRRS virus were first detected by the IFA test, IPMA, ELISA, and the SVN test 9-11, 5-9, 9-13, and 9-28 days postinoculation (PI), respectively, and reached their maximum values by 4-5, 5-6, 4-6, and 10-11 weeks PI, respectively, thereafter. After reaching maximum value, all assays showed a decline in antibody levels. Assuming a constant rate of antibody decay, it was estimated by regression analysis that the ELISA, IFA, IPMA, and SVN antibody titers would approach the lower limits of detection by approximately days 137, 158, 324, and 356 PI, respectively. In this study, the immunoperoxidase monolayer assay appeared to offer slightly better performance relative to the IFA test, ELISA, and SVN test in terms of earlier detection and slower rate of decline in antibody titers. Western immunoblot analysis revealed that antibody specific for the 15-kD viral protein was present in all pigs by 7 days PI and persisted throughout the 105-day observation period. Initial detection of antibodies to the 19-, 23-, and 26-kD proteins varied among pigs, ranging from 9 to 35 days PI. Thereafter, the antibody responses to these 3 viral proteins of PRRS virus continued to be detected throughout the 105-day study period. These results clearly indicate that the 15-kD protein is the most immunogenic of the 4 viral proteins identified and may provide the antigenic basis for the development of improved diagnostic tests for the detection of PRRS virus antibodies.


Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 233 ◽  
Author(s):  
Kay Kimpston-Burkgren ◽  
Juan Carlos Mora-Díaz ◽  
Philippe Roby ◽  
Jordan Bjustrom-Kraft ◽  
Rodger Main ◽  
...  

Coronavirus infections are a continuous threat raised time and again. With the recent emergence of novel virulent strains, these viruses can have a large impact on human and animal health. Porcine epidemic diarrhea (PED) is considered to be a reemerging pig disease caused by the enteropathogenic alphacoronavirus PED virus (PEDV). In the absence of effective vaccines, infection prevention and control through diagnostic testing and quarantine are critical. Early detection and differential diagnosis of PEDV infections increase the chance of successful control of the disease. Therefore, there is a continuous need for development of reduced assay-step protocols, no-wash, high-throughput immunoassays. This study described the characterization of the humoral immune response against PEDV under experimental and field conditions using a rapid, sensitive, luminescent proximity homogenous assay (AlphaLISA). PEDV IgG and IgA antibodies were developed toward the beginning of the second week of infection. PEDV IgG antibodies were detected for at least 16 weeks post-exposure. Remarkably, the serum IgA levels remained high and relatively stable throughout the study, lasting longer than the serum IgG response. Overall, AlphaLISA allows the detection and characterization of pathogen-specific antibodies with new speed, sensitivity, and simplicity of use. Particularly, the bridge assay constitutes a rapid diagnostic that substantially improves upon the “time to result” metric of currently available immunoassays.


Sign in / Sign up

Export Citation Format

Share Document