Thermoelastic interaction of two offset interfacial cracks in bonded dissimilar half-planes with a functionally graded interlayer

2014 ◽  
Vol 225 (7) ◽  
pp. 2111-2131 ◽  
Author(s):  
Hyung Jip Choi
2014 ◽  
Vol 81 (8) ◽  
Author(s):  
Hyung Jip Choi

The impact response of bonded media with a functionally graded interlayer weakened by a pair of two offset interfacial cracks is investigated under the condition of antiplane deformation. The material nonhomogeneity in the graded interlayer is represented in terms of power-law variations of shear modulus and mass density between the dissimilar, homogeneous half-planes. Laplace and Fourier integral transforms are employed to reduce the crack problem to solving a system of Cauchy-type singular integral equations in the Laplace domain. The crack-tip behavior in the physical domain is recovered through the inverse Laplace transform to evaluate the dynamic mode III stress intensity factors as a function of time. As a result, the transient interaction of the offset interfacial cracks spaced apart by the graded interlayer is illustrated. The peak values of the dynamic stress intensity factors are also presented versus offset crack distance, elaborating the effects of various material and geometric parameters of the bonded system on the overshoot characteristics of the transient behavior in the near-tip regions, owing to the impact-induced interaction of singular stress fields between the two cracks.


Author(s):  
Stewart Chidlow ◽  
Mircea Teodorescu

This paper is concerned with the solution of the contact problem that results when a rigid punch is pressed into the surface of an inhomogeneously elastic solid comprising three distinct layers. The upper and lower layers of the solid are assumed to be homogeneous and are joined together by a functionally graded interlayer whose material properties progressively change from those of the coating to those of the substrate. By applying the Fourier transform to the governing boundary value problem (BVP), we may write the stresses and displacements within the solid in terms of indefinite integrals. In particular, the expressions for the horizontal and vertical displacements of the solid surface are used to formulate a coupled pair of integral equations which may be solved numerically to approximate the solution of the stamp problem. A selection of numerical results are then presented which illustrate the effects of friction on the contact problem and it is found that the presence of friction within the contact increases the magnitude of the maximum principal stress and changes its location. These observations indicate that material failure is much more likely to occur when friction is present within the contact as expected.


Sign in / Sign up

Export Citation Format

Share Document