Interface diffusion-induced creep in metal matrix particulate composites under triaxial loading

2017 ◽  
Vol 228 (7) ◽  
pp. 2471-2481
Author(s):  
Yang Sun ◽  
Ang Li ◽  
Xiang Ren ◽  
Yi Lu ◽  
Mabao Liu
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2143
Author(s):  
Shaimaa I. Gad ◽  
Mohamed A. Attia ◽  
Mohamed A. Hassan ◽  
Ahmed G. El-Shafei

In this paper, an integrated numerical model is proposed to investigate the effects of particulate size and volume fraction on the deformation, damage, and failure behaviors of particulate-reinforced metal matrix composites (PRMMCs). In the framework of a random microstructure-based finite element modelling, the plastic deformation and ductile cracking of the matrix are, respectively, modelled using Johnson–Cook constitutive relation and Johnson–Cook ductile fracture model. The matrix-particle interface decohesion is simulated by employing the surface-based-cohesive zone method, while the particulate fracture is manipulated by the elastic–brittle cracking model, in which the damage evolution criterion depends on the fracture energy cracking criterion. A 2D nonlinear finite element model was developed using ABAQUS/Explicit commercial program for modelling and analyzing damage mechanisms of silicon carbide reinforced aluminum matrix composites. The predicted results have shown a good agreement with the experimental data in the forms of true stress–strain curves and failure shape. Unlike the existing models, the influence of the volume fraction and size of SiC particles on the deformation, damage mechanism, failure consequences, and stress–strain curve of A359/SiC particulate composites is investigated accounting for the different possible modes of failure simultaneously.


2011 ◽  
Vol 316-317 ◽  
pp. 97-106 ◽  
Author(s):  
Tahir Ahmad ◽  
Othman Mamat

Metal matrix-particulate composites fabricated by using powder metallurgy possess a higher dislocation density, a small sub-grain size and limited segregation of particles, which, when combined, result in superior mechanical properties. The present study aims to develop iron based silica sand nanoparticles composites with improved mechanical properties. An iron based silica sand nanoparticles composite with 5, 10, 15 and 20 wt.% of nanoparticles silica sand were developed through powder metallurgy technique. It was observed that by addition of silica sand nanoparticles with 20 wt.% increased the hardness up to 95HRB and tensile strength up to 690MPa. Sintered densities and electrical conductivity of the composites were improved with an optimum value of 15 wt.% silica sand nanoparticles. Proposed mechanism is due to diffusion of silica sand nanoparticles into porous sites of the composites.


1990 ◽  
Vol 123 (1) ◽  
pp. 89-97 ◽  
Author(s):  
P.K. Rohatgi ◽  
S. Raman ◽  
B.S. Majumdar ◽  
A. Banerjee

Cast Metals ◽  
1995 ◽  
Vol 7 (4) ◽  
pp. 211-218
Author(s):  
B. K. Dhindaw ◽  
S. C. Panigrahi ◽  
R. S. Salimath ◽  
A. Biswas

Sign in / Sign up

Export Citation Format

Share Document