A semi-analytical solution for finite bending of a functionally graded hydrogel strip

2019 ◽  
Vol 230 (7) ◽  
pp. 2625-2637 ◽  
Author(s):  
Mohammad Reza Bayat ◽  
Arash Kargar-Estahbanaty ◽  
Mostafa Baghani
2021 ◽  
Vol 2 (110) ◽  
pp. 72-85
Author(s):  
S.H. Bakhy ◽  
M. Al-Waily ◽  
M.A. Al-Shammari

Purpose: In this study, the free vibration analysis of functionally graded materials (FGMs) sandwich beams having different core metals and thicknesses is considered. The variation of material through the thickness of functionally graded beams follows the power-law distribution. The displacement field is based on the classical beam theory. The wide applications of functionally graded materials (FGMs) sandwich structures in automotive, marine construction, transportation, and aerospace industries have attracted much attention, because of its excellent bending rigidity, low specific weight, and distinguished vibration characteristics. Design/methodology/approach: A mathematical formulation for a sandwich beam comprised of FG core with two layers of ceramic and metal, while the face sheets are made of homogenous material has been derived based on the Euler–Bernoulli beam theory. Findings: The main objective of this work is to obtain the natural frequencies of the FG sandwich beam considering different parameters. Research limitations/implications: The important parameters are the gradient index, slenderness ratio, core metal type, and end support conditions. The finite element analysis (FEA), combined with commercial Ansys software 2021 R1, is used to verify the accuracy of the obtained analytical solution results. Practical implications: It was found that the natural frequency parameters, the mode shapes, and the dynamic response are considerably affected by the index of volume fraction, the ratio as well as face FGM core constituents. Finally, the beam thickness was dividing into frequent numbers of layers to examine the impact of many layers' effect on the obtained results. Originality/value: It is concluded, that the increase in the number of layers prompts an increment within the frequency parameter results' accuracy for the selected models. Numerical results are compared to those obtained from the analytical solution. It is found that the dimensionless fundamental frequency decreases as the material gradient index increases, and there is a good agreement between two solutions with a maximum error percentage of no more than 5%.


2018 ◽  
Vol 27 (1) ◽  
pp. 096369351802700 ◽  
Author(s):  
Samir Brairi ◽  
Bachir Kerboua ◽  
Ismail Bensaid

In this paper, a new analytical solution is presented to predict the interfacial stresses of a functionally graded beam reinforced by a prestressed CFRP plate under thermo-mechanical load. A finite element (FE) analysis is also employed to validate the results of the analytical solution, the results from both models agreed very closely. Also, a parametric study is carried out in order to identify the effects of various material and geometrical properties on the magnitude of interfacial stresses. The presented results show that the interfacial stresses are highly concentrated at the end of the laminate, which can lead to a debonding at this location. Also, the material and geometrical properties have a significant impact on the magnitude of interfacial stresses. This new research approaches the practical reality of the structures in their environment by taking into consideration a combination of neglected terms by the other studies. Therefore, the results presented in this paper can serve as a benchmark for future analyses of functionally graded beams strengthened by prestressed Carbon fibre-rein-forced polymer (CFRP) plates and improve the rehabilitation, mechanical and corrosion resistance.


2018 ◽  
Vol 27 (6) ◽  
pp. 096369351802700
Author(s):  
Samir Brairi ◽  
Bachir Kerboua ◽  
Ismail Bensaid

In this paper, a new analytical solution is presented to predict the interfacial stresses of a functionally graded beam reinforced by a prestressed CFRP plate under thermo-mechanical load. A finite element (FE) analysis is also employed to validate the results of the analytical solution, the results from both models agreed very closely. Also, a parametric study is carried out in order to identify the effects of various material and geometrical properties on the magnitude of interfacial stresses. The presented results show that the interfacial stresses are highly concentrated at the end of the laminate, which can lead to a debonding at this location. Also, the material and geometrical properties have a significant impact on the magnitude of interfacial stresses. This new research approaches the practical reality of the structures in their environment by taking into consideration a combination of neglected terms by the other studies. Therefore, the results presented in this paper can serve as a benchmark for future analyses of functionally graded beams strengthened by prestressed Carbon fibre-rein-forced polymer (CFRP) plates and improve the rehabilitation, mechanical and corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document