In-plane and out-of-plane tensile behaviour of single-layer graphene sheets: a new interatomic potential

2020 ◽  
Vol 231 (7) ◽  
pp. 2915-2930
Author(s):  
Alessandra Genoese ◽  
Andrea Genoese ◽  
Ginevra Salerno
2019 ◽  
Vol 24 (11) ◽  
pp. 3418-3443 ◽  
Author(s):  
Alessandra Genoese ◽  
Andrea Genoese ◽  
Nicola Luigi Rizzi ◽  
Ginevra Salerno

The tensile behaviour and the pure shear behaviour of pristine and perforated single-layer graphene sheets are numerically investigated through a stick-and-spring model including both material and geometric non-linearities. The model is formulated in finite kinematics and the atomic interactions are modelled through the modified Morse potential, tuned with an improved set of parameters. The progression of the failure process of the sheets is numerically reconstructed using the arc-length strategy. The failure profiles are displayed and discussed. A continualization of the obtained results is made. The engineering strains and stresses and the second Piola and Green–Lagrange tensors are computed and compared with results given in the literature.


Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

Using the linearized Boltzmann transport equation and perturbation theory, we analyze the reduction in the intrinsic thermal conductivity of few-layer graphene sheets accounting for all possible three-phonon scattering events. Even with weak coupling between layers, a significant reduction in the thermal conductivity of the out-of-plane acoustic modes is apparent. The main effect of this weak coupling is to open many new three-phonon scattering channels that are otherwise absent in graphene. The highly restrictive selection rule that leads to a high thermal conductivity of ZA phonons in single-layer graphene is only weakly broken with the addition of multiple layers, and ZA phonons still dominate thermal conductivity. We also find that the decrease in thermal conductivity is mainly caused by decreased contributions of the higher-order overtones of the fundamental out-of-plane acoustic mode. Moreover, the extent of reduction is largest when going from single to bilayer graphene and saturates for four layers. The results compare remarkably well over the entire temperature range with measurements of of graphene and graphite.


2018 ◽  
Vol 133 ◽  
pp. 109-131 ◽  
Author(s):  
S.N. Korobeynikov ◽  
V.V. Alyokhin ◽  
A.V. Babichev

2014 ◽  
Vol 41 (4) ◽  
pp. 325-332 ◽  
Author(s):  
Caihong Wang ◽  
Qiang Han ◽  
Dongrong Xin

2011 ◽  
Vol 22 (30) ◽  
pp. 305703 ◽  
Author(s):  
Jaber Rezaei Mianroodi ◽  
Sina Amini Niaki ◽  
Reza Naghdabadi ◽  
Mohsen Asghari

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jungkyu Park ◽  
Vikas Prakash

In the present study, reverse nonequilibrium molecular dynamics is employed to study thermal resistance across interfaces comprising dimensionally mismatched junctions of single layer graphene floors with (6,6) single-walled carbon nanotube (SWCNT) pillars in 3D carbon nanomaterials. Results obtained from unit cell analysis indicate the presence of notable interfacial thermal resistance in the out-of-plane direction (along the longitudinal axis of the SWCNTs) but negligible resistance in the in-plane direction along the graphene floor. The interfacial thermal resistance in the out-of-plane direction is understood to be due to the change in dimensionality as well as phonon spectra mismatch as the phonons propagate from SWCNTs to the graphene sheet and then back again to the SWCNTs. The thermal conductivity of the unit cells was observed to increase nearly linearly with an increase in cell size, that is, pillar height as well as interpillar distance, and approaches a plateau as the pillar height and the interpillar distance approach the critical lengths for ballistic thermal transport in SWCNT and single layer graphene. The results indicate that the thermal transport characteristics of these SWCNT-graphene hybrid structures can be tuned by controlling the SWCNT-graphene junction characteristics as well as the unit cell dimensions.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jianzhang Huang ◽  
Qiang Han

The formation and evolution mechanisms of wrinkling in a rectangular single layer graphene sheet (SLGS) with simply supported boundary subjected to in-plane shear displacements are investigated using molecular dynamics simulations. Through investigating the out-of-plane displacements of the key point atom, we clarify the wrinkling growth and propagation process. Our results show that the boundary condition plays important roles in the wrinkling deformation. And the dependence of wrinkling parameters on the applied shear displacements is captured. Based on the elasticity theory, the formation mechanism of graphene wrinkling is revealed from the viewpoint of elastic energy. The effects of aspect ratio of graphene, temperature, and loading velocity on graphene wrinkling parameters and patterns are also investigated.


Sign in / Sign up

Export Citation Format

Share Document