Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm

Amino Acids ◽  
2009 ◽  
Vol 37 (3) ◽  
pp. 443-458 ◽  
Author(s):  
Dimitrios A. Kyriakidis ◽  
Ekaterini Tiligada
mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Julia A. Kleinmanns ◽  
Katherine Decker ◽  
Anand V. Sastry ◽  
Ye Gao ◽  
...  

ABSTRACT Escherichia coli uses two-component systems (TCSs) to respond to environmental signals. TCSs affect gene expression and are parts of E. coli’s global transcriptional regulatory network (TRN). Here, we identified the regulons of five TCSs in E. coli MG1655: BaeSR and CpxAR, which were stimulated by ethanol stress; KdpDE and PhoRB, induced by limiting potassium and phosphate, respectively; and ZraSR, stimulated by zinc. We analyzed RNA-seq data using independent component analysis (ICA). ChIP-exo data were used to validate condition-specific target gene binding sites. Based on these data, we do the following: (i) identify the target genes for each TCS; (ii) show how the target genes are transcribed in response to stimulus; and (iii) reveal novel relationships between TCSs, which indicate noncognate inducers for various response regulators, such as BaeR to iron starvation, CpxR to phosphate limitation, and PhoB and ZraR to cell envelope stress. Our understanding of the TRN in E. coli is thus notably expanded. IMPORTANCE E. coli is a common commensal microbe found in the human gut microenvironment; however, some strains cause diseases like diarrhea, urinary tract infections, and meningitis. E. coli’s two-component systems (TCSs) modulate target gene expression, especially related to virulence, pathogenesis, and antimicrobial peptides, in response to environmental stimuli. Thus, it is of utmost importance to understand the transcriptional regulation of TCSs to infer bacterial environmental adaptation and disease pathogenicity. Utilizing a combinatorial approach integrating RNA sequencing (RNA-seq), independent component analysis, chromatin immunoprecipitation coupled with exonuclease treatment (ChIP-exo), and data mining, we suggest five different modes of TCS transcriptional regulation. Our data further highlight noncognate inducers of TCSs, which emphasizes the cross-regulatory nature of TCSs in E. coli and suggests that TCSs may have a role beyond their cognate functionalities. In summary, these results can lead to an understanding of the metabolic capabilities of bacteria and correctly predict complex phenotype under diverse conditions, especially when further incorporated with genome-scale metabolic models.


2007 ◽  
Vol 104 (47) ◽  
pp. 18712-18717 ◽  
Author(s):  
Y. Eguchi ◽  
J. Itou ◽  
M. Yamane ◽  
R. Demizu ◽  
F. Yamato ◽  
...  

2006 ◽  
Vol 188 (14) ◽  
pp. 5055-5065 ◽  
Author(s):  
Yih-Ling Tzeng ◽  
Xiaoliu Zhou ◽  
Shaojia Bao ◽  
Shuming Zhao ◽  
Corie Noble ◽  
...  

ABSTRACT Two-component regulatory systems are involved in processes important for bacterial pathogenesis. The proposed misR/misS (or phoP/phoQ) system is one of four two-component systems of the obligate human pathogen Neisseria meningitidis. Inactivation of this system results in loss of phosphorylation of the lipooligosaccharide inner core and causes attenuation in a mouse model of meningococcal infection. MisR and the cytoplasmic domain of MisS were purified as His6 and maltose binding protein fusion proteins, respectively. The MisS fusion was shown to be autophosphorylated in the presence of ATP, and the phosphoryl group was subsequently transferred to MisR. The phosphotransfer reaction was halted with a MisR/D52A mutation, while a MisS/H246A mutation prevented autophosphorylation. Specific interaction of phosphorylated MisR (MisR∼P) and MisR with the misR promoter was demonstrated by gel mobility shift assays, where MisR∼P exhibited higher affinity than did the nonphosphorylated protein. The transcriptional start site of the misRS operon was mapped, and DNase I protection assays revealed that MisR interacted with a 15-bp region upstream of the transcriptional start site that shared no similarity to binding motifs of other two-component systems. Transcriptional reporter studies suggested that MisR phosphorylation is critical for the autoinduction of the misRS operon. Limited Mg2+ concentration failed to induce expression of the misRS operon, which is the only operon now proven to be under the direct control of the MisRS two-component system. Thus, these results indicate that the meningococcal MisRS system constitutes a functional signal transduction circuit and that both components are critical in the autoregulation of their expression.


Microbiology ◽  
2005 ◽  
Vol 151 (5) ◽  
pp. 1577-1592 ◽  
Author(s):  
Milla Pietiäinen ◽  
Marika Gardemeister ◽  
Maria Mecklin ◽  
Soile Leskelä ◽  
Matti Sarvas ◽  
...  

Stress responses of Bacillus subtilis to membrane-active cationic antimicrobial peptides were studied. Global analysis of gene expression by DNA macroarray showed that peptides at a subinhibitory concentration activated numerous genes. A prominent pattern was the activation of two extracytoplasmic function sigma factor regulons, SigW and SigM. Two natural antimicrobial peptides, LL-37 and PG-1, were weak activators of SigW regulon genes, whereas their synthetic analogue poly-l-lysine was clearly a stronger activator of SigW. It was demonstrated for the first time that LL-37 is a strong and specific activator of the YxdJK two-component systems, one of the three highly homologous two-component systems sensing antimicrobial compounds. YxdJK regulates the expression of the YxdLM ABC transporter. The LiaRS (YvqCE) TCS was also strongly activated by LL-37, but its activation is not LL-37 specific, as was demonstrated by its activation with PG-1 and Triton X-100. Other strongly LL-37-induced genes included yrhH and yhcGHI. Taken together, the responses to cationic antimicrobial peptides revealed highly complex regulatory patterns and induction of several signal transduction pathways. The results suggest significant overlap between different stress regulons and interdependence of signal transduction pathways mediating stress responses.


2020 ◽  
Vol 65 (3) ◽  
Author(s):  
Annie I. Chen ◽  
Francisco Javier Albicoro ◽  
Jun Zhu ◽  
Mark Goulian

ABSTRACT Polymyxins are a class of cyclic peptides with antimicrobial activity against Gram-negative bacteria. In Enterobacteriaceae, the PhoQ/PhoP and PmrB/PmrA two-component systems regulate many genes that confer resistance to both polymyxins and host antimicrobial peptides. The activities of these two-component systems are modulated by additional proteins that are conserved across Enterobacteriaceae, such as MgrB, a negative regulator of PhoQ, and PmrD, a “connector” protein that activates PmrB/PmrA in response to PhoQ/PhoP stimulation. Despite the conservation of many protein components of the PhoQ/PhoP-PmrD-PmrB/PmrA network, the specific molecular interactions and regulatory mechanisms vary across different genera. Here, we explore the role of PmrD in modulating this signaling network in Klebsiella pneumoniae and Escherichia coli. We show that in K. pneumoniae, PmrD is not required for polymyxin resistance arising from mutation of mgrB—the most common cause of spontaneous polymyxin resistance in this bacterium—suggesting that direct activation of polymyxin resistance genes by PhoQ/PhoP plays a critical role in this resistance pathway. However, for conditions of low pH or intermediate iron concentrations, both of which stimulate PmrB/PmrA, we find that PmrD does contribute to resistance. We further show that in E. coli, PmrD functions as a connector between PhoQ/PhoP and PmrB/PmrA, in contrast with previous reports. In this case, activity also depends on PmrB/PmrA stimulation, or on very high activation of PhoQ/PhoP. Our results indicate that the importance of the PmrD connector in modulating the polymyxin resistance network depends on both the network organization and on the environmental conditions associated with PmrB stimulation.


Sign in / Sign up

Export Citation Format

Share Document