Anti-obesity effect of taurine through inhibition of adipogenesis in white fat tissue but not in brown fat tissue in a high-fat diet-induced obese mouse model

Amino Acids ◽  
2018 ◽  
Vol 51 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Kyoung Soo Kim ◽  
Min Ju Jang ◽  
Sungsoon Fang ◽  
Seul Gi Yoon ◽  
Il Yong Kim ◽  
...  
Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 688 ◽  
Author(s):  
Kyoung Soo Kim ◽  
Hari Madhuri Doss ◽  
Hee-Jin Kim ◽  
Hyung-In Yang

This study was conducted to investigate if taurine supplementation stimulates the induction of thermogenic genes in fat tissues and muscles and decipher the mechanism by which taurine exerts its anti-obesity effect in a mildly obese ICR (CD-1®) mouse model. Three groups of ICR mice were fed a normal chow diet, a high-fat diet (HFD), or HFD supplemented with 2% taurine in drinking water for 28 weeks. The expression profiles of various genes were analyzed by real time PCR in interscapular brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), and the quadriceps muscles of the experimental groups. Genes that are known to regulate thermogenesis like PGC-1α, UCP-1, Cox7a1, Cox8b, CIDE-A, and β1-, β2-, and β3-adrenergic receptors (β-ARs) were found to be differentially expressed in the three tissues. These genes were expressed at a very low level in iWAT as compared to BAT and muscle. Whereas, HFD increased the expression of these genes. Taurine supplementation stimulated the expression of UCP-1, Cox7a1, and Cox8b in BAT and only Cox7a1 in muscle, while there was a decrease in iWAT. In contrast, fat deposition-related genes, monoamine oxidases (MAO)-A, and -B, and lipin-1, were decreased by taurine supplementation only in iWAT and not in BAT or muscle. In conclusion, the potential anti-obesity effects of taurine may be partly due to upregulated thermogenesis in BAT, energy metabolism of muscle, and downregulated fat deposition in iWAT.


2018 ◽  
Vol 218 (1) ◽  
pp. S17-S18
Author(s):  
Matthew R. Grace ◽  
Neeta L. Vora ◽  
Lisa Smeester ◽  
Sarah Dotters-Katz ◽  
Rebecca Fry ◽  
...  

2003 ◽  
Vol 14 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Ann Allen Coulter ◽  
Christie M. Bearden ◽  
Xiaotuan Liu ◽  
Robert A. Koza ◽  
Leslie P. Kozak

To identify novel regulatory factors controlling induction of the brown adipocyte-specific mitochondrial uncoupling protein ( Ucp1) mRNA in the retroperitoneal white fat depot, we previously mapped quantitative trait loci (QTLs) that control this trait to chromosomes 2, 3, 8, and 19. Since the peroxisome proliferator activator receptor-γ coactivator-1α (PGC-1α) regulates Ucp1 and other genes of energy metabolism, we have evaluated whether the QTLs controlling Ucp1 mRNA levels also modulate Pgc-1α mRNA levels by analysis of backcross progeny from the A/J and C57BL/6J strains of mice. The results indicate that a locus on chromosome 3 orchestrates expression of Pgc-1α and Ucp1 in retroperitoneal fat of mice fed a low-fat diet; however, the effect of this locus on Pgc-1α is lost, and a significant correlation between Ucp1 and Pgc-1α is severely reduced in mice fed a high-fat diet. An additional QTL located on chromosome 5 has also been identified for the selective regulation of Ucp1 mRNA levels. Similar to the effects of a high-fat diet on the chromosome 3 QTL, linkage of the chromosome 5 QTL is also lost in mice on a high-fat diet. Thus dietary fat has a profound influence on PGC-1α-regulated pathways controlling energy metabolism in white fat. The allelic variation observed in the regulation of Ucp1 and Pgc-1α expression in brown adipocytes of white fat but not interscapular brown fat suggests that fundamentally different regulatory mechanisms exist to control the thermogenic capacities of these tissues.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2453 ◽  
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Junho Kim ◽  
Subin Yeo ◽  
Ji Ae Kim ◽  
...  

Obesity is one of the most common metabolic diseases resulting in metabolic syndrome. In this study, we investigated the antiobesity effect of Gentiana lutea L. (GL) extract on 3T3-L1 preadipocytes and a high-fat-diet (HFD)-induced mouse model. For the induction of preadipocytes into adipocytes, 3T3-L1 cells were induced by treatment with 0.5 mM 3-isobutyl-1-methylxanthine, 1 mM dexamethasone, and 1 μg/mL insulin. Adipogenesis was assessed based on the messenger ribonucleic acid expression of adipogenic-inducing genes (adiponectin (Adipoq), CCAAT/enhancer-binding protein alpha (Cebpa), and glucose transporter type 4 (Slc2a4)) and lipid accumulation in the differentiated adipocytes was visualized by Oil Red O staining. In vivo, obese mice were induced with HFD and coadministered with 100 or 200 mg/kg/day of GL extract for 12 weeks. GL extract treatment inhibited adipocyte differentiation by downregulating the expression of adipogenic-related genes in 3T3-L1 cells. In the obese mouse model, GL extract prevented HFD-induced weight gain, fatty hepatocyte deposition, and adipocyte size by decreasing the secretion of leptin and insulin. In conclusion, GL extract shows antiobesity effects in vitro and in vivo, suggesting that this extract can be beneficial in the prevention of obesity.


Health ◽  
2017 ◽  
Vol 09 (12) ◽  
pp. 1660-1679
Author(s):  
Tamae Urai ◽  
Yukari Nakajima ◽  
Kanae Mukai ◽  
Kimi Asano ◽  
Mayumi Okuwa ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yea-Jin Park ◽  
Dong-Wook Seo ◽  
Tae-Young Gil ◽  
Divina C. Cominguez ◽  
Hwan Lee ◽  
...  

The global obesity epidemic has nearly doubled since 1980, and this increasing prevalence is threatening public health. It has been reported that natural products could contain potential functional ingredients that may assist in preventing obesity. Bojungchiseub-tang (BJT), mentioned in the Donguibogam as an herbal medication for the treatment of edema, a symptom of obesity, consists of eleven medicinal herbs. However, the pharmacological activity of BJT has not been investigated. The present study was designed to investigate the putative effect of BJT on the adipogenesis of 3T3-L1 cells and the weight gain of high-fat diet (HFD-) fed C57BL/6 mice. Oil Red O staining was conducted to examine the amount of lipids in 3T3-L1 adipocytes. Male C57BL/6 mice were divided into three groups: standard diet group (control, CON), 45% HFD group (HFD), and HFD supplemented with 10% of BJT (BJT). The expression levels of genes and proteins related to adipogenesis in cells, WAT, and liver were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. We found that BJT treatment significantly decreased the protein and mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1) in a dose-dependent manner in differentiated 3T3-L1 cells. Similar to the results of the in vitro experiment, BJT suppressed HFD-induced weight gain in an obese mouse model. In addition, BJT effectively reduced the HFD-induced epididymal adipose tissue weight/body weight index. BJT also downregulated the mRNA levels of PPARγ, C/EBPα, and SREBP1 in the epididymal adipose and liver tissue of HFD-fed obese mice. These findings suggest that BJT induces weight loss by affecting adipogenic transcription factors.


Sign in / Sign up

Export Citation Format

Share Document