Push-Pull-Tests in einer isolierten Einzelkluft – Geländeversuche und numerische Modellierung

Grundwasser ◽  
2017 ◽  
Vol 22 (4) ◽  
pp. 277-291
Author(s):  
Judith Orilski ◽  
Stefan Wohnlich
Author(s):  
Are Håvard Høien ◽  
Charlie C. Li ◽  
Ning Zhang

AbstractRock bolts are one of the main measures used to reinforce unstable blocks in a rock mass. The embedment length of fully grouted bolts in the stable and competent rock stratum behind the unstable rock blocks is an important parameter in determining overall bolt length. It is required that the bolt section in the stable stratum must be longer than the critical embedment length to ensure the bolt will not slip when loaded. Several series of pull tests were carried out on fully grouted rebar bolts to evaluate the pull-out mechanics of the bolts. Bolt specimens with different embedment lengths and water/cement ratios were installed in either a concrete block of one cubic meter or in steel cylinders. Load displacement was recorded during testing. For some of the bolts loaded beyond the yield load, permanent plastic steel deformation was also recorded. Based on the test results, three types of failure mechanisms were identified, corresponding to three loading conditions: (1) pull-out below the yield strength of the bolt steel; (2) pull-out between the yield and ultimate loads, that is, during strain hardening of the steel; and (3) steel failure at the ultimate load. For failure mechanisms 2 and 3, it was found that the critical embedment length of the bolt included three components: an elastic deformation length, a plastic deformation length and a completely debonded length due to the formation of a failure cone at the borehole collar.


Author(s):  
Pablo Cazenave ◽  
Ming Gao ◽  
Hans Deeb ◽  
Sean Black

The project “Development of an Industry Test Facility and Qualification Processes for in-line inspection (ILI) technology Evaluation and Enhancements” aims to expand knowledge of ILI technology performance and identify gaps where new technology is needed. Additionally, this project also aims to provide ILI technology developers, researchers and pipeline operators a continuing resource for accessing test samples with a range of pipeline integrity threats and vintages; and inline technology test facilities at the Technology Development Center (TDC) of Pipeline Research Council International, Inc. (PRCI), a PRCI managed facility available for future industry and PHMSA research projects. An ILI pull test facility was designed and constructed as part of this project based on industry state-of-the-art and opportunities for capability improvement. The major ILI technology providers, together with pipeline operator team members, reviewed the TDC sample inventory and developed a series of ILI performance tests illustrating one of multiple possible research objectives, culminating in 16-inch and 24-inch nominal diameter test strings. The ILI technology providers proposed appropriate inspection tools based on the types of the integrity threats in the test strings, a series of pull tests of the provided ILI tools were performed, and the technology providers delivered reports of integrity anomaly location and dimensions for performance evaluation. Quantitative measures of detection and sizing performance were confidentially disclosed to the individual ILI technology providers. For instances where ILI predictions were outside of claimed performance, the vendors were given a limited sample of actual defect data to enable re-analysis, thus demonstrating the potential for improved integrity assessment with validation measurements. In this paper, an evaluation of the ILI data obtained from repeated pull-through testing on the 16 and 24-inch pipeline strings at the TDC is performed. The resulting data was aligned, analyzed, and compared to truth data and the findings of the evaluation are presented.


2017 ◽  
Vol 53 (11) ◽  
pp. 9528-9545 ◽  
Author(s):  
Kewei Chen ◽  
Hongbin Zhan ◽  
Qiang Yang

PAMM ◽  
2003 ◽  
Vol 2 (1) ◽  
pp. 250-251
Author(s):  
H. Rattensperger ◽  
J. Eberhardsteiner ◽  
H.A. Mang

Author(s):  
Johannes Palmer ◽  
Aaron Schartner ◽  
Andrey Danilov ◽  
Vincent Tse

Abstract Magnetic Flux Leakage (MFL) is a robust technology with high data coverage. Decades of continuous sizing improvement allowed for industry-accepted sizing reliability. The continuous optimization of sizing processes ensures accurate results in categorizing metal loss features. However, the identified selection of critical anomalies is not always optimal; sometimes anomalies are dug up too early or unnecessarily, this can be caused by the feature type in the field (true metal loss shape) being incorrectly identified which affects sizing and tolerance. In addition, there is the possibility for incorrectly identifying feature types causing false under-calls. Today, complex empirical formulas together with multifaceted lookup tables fed by pull tests, synthetic data, dig verifications, machine learning, artificial intelligence and last but not least human expertise translate MFL signals into metal loss assessments with high levels of success. Nevertheless, two important principal elements are limiting the possible MFL sizing optimization. One is the empirical character of the signal interpretation. The other is the implicitly induced data and result simplification. The reason to go this principal route for many years is simple: it is methodologically impossible to calculate the metal source geometry directly from the signals. In addition, the pure number of possible relevant geometries is so large that simplification is necessary and inevitable. Moreover, the second methodological reason is the ambiguity of the signal, which defines the target of metal loss sizing as the most probable solution. However, even under the best conditions, the most probable one is not necessarily the correct one. This paper describes a novel, fundamentally different approach as a basic alternative to the common MFL-analysis approach described above. A calculation process is presented, which overcomes the empirical nature of traditional approaches by using a result optimization method that relies on intense computing and avoids any simplification. Additionally, the strategy to overcome MFL ambiguity will be shown. Together with the operator, detailed blind-test examples demonstrate the enormous level of detail, repeatability and accuracy of this groundbreaking technological method with the potential to reduce tool tolerance, increase sizing accuracy, increase growth rate accuracy, and help optimize the dig program to target critical features with greater confidence.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000039-000045 ◽  
Author(s):  
James Galipeau ◽  
Matt Gerlach

While ferrite Low Temperature Co-fired Ceramic (LTCC) inductor and transformer developments have undergone thermal shock and high temperature aging that focused on the stability of their electrical characteristics (resistance, inductance), little attention has been paid to their termination reliability at high temperatures. Testing has been done on AgPt and AgPd terminations with Ag5Cd95 and Pb88Sn10Ag2 solders for 2000 and 25 hrs, respectively. However, Ag5Cd95 is unusable in commercial applications due to ROHS restrictions while Pb88Sn10Ag2 is undesirable because of the high lead content. Sn96 solder and wire bonding are common attachment methods that have not been vetted. Initial investigations show that high Sn solders may interfere with bonding between the AgPt and AgPd termination materials and the ferrite bulk of the part. An alternative terminal structure for using Sn96 solder is created by electroplating Au and Ni; however, electroplating to ferrite is challenging due to the masking involved. Also, the preferred materials for wire bonding are thick film, thin film or electroplated Au. To this end an alternative termination structure using Au sputter deposited onto sputter deposited Ti is being investigated. This structure was chosen for its potential to be a lower cost alternative to thick film Au and for its potential for simpler manufacturing than electroplating. Tests involved measuring bond strength and resistance after thermal ageing and thermal shock. Baseline solder joint pull tests show strength comparable to other termination methods. Some issues with solder wetting of the terminals have been noted.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000425-000429 ◽  
Author(s):  
Richard C. Garcia

Thick film technology is based on a paste containing glass frit that is screen printed and fused at high temperature onto various ceramic substrate materials. Softening or melting this glassy frit forms a cohesive layer, binding the conductors, resistors or dielectric materials to the ceramic. The dynamics of the printing process and inherent number of associated variables negatively impact the uniformity of the fired surface on a micro scale, which can lead to variation in the wire bonding process. Other processes associated with thick film substrate fabrication can cause problems as well. Laser trimming is used to adjust the value of printed resistors to meet design requirements. This ablation of printed resistors by high–powered pulse laser leaves a halo of debris and contamination on the ceramic substrate, which can cause wire bond lifting. In this paper, we will demonstrate a way to eliminate these problems using a bonding technique called Stand- Off Stitch bonding (SOS). This wire bond type is formed by first placing a ball bump at the second bond, or stitch, location on the thick film substrate, and then forming a normal wire that terminates on that bump. This places two ball bumps at each end of the wire, similar to a security bond. However, the ball bump is located under the stitch instead of on top. This SOS wire bond technique is compliant with the MIL-STD- 883 for a compound bond, where one bond is placed on top of another bond. With the gold bump placed on top of the gold thick film pad, the bump acts as a foundation for the stitch bond, providing a wider contact area and clean bond surface to secure a reliable stitch bond interconnect. With this change, an abrupt improvement to the resultant destruct wire pull tests can be achieved, promoting a robust, controlled process for wire bond interconnects.


Sign in / Sign up

Export Citation Format

Share Document