Stromal cell activity in bone marrow from the tibia and iliac crest of patients with rheumatoid arthritis

2001 ◽  
Vol 19 (1) ◽  
pp. 56-60 ◽  
Author(s):  
Yoshihiro Suzuki ◽  
Kang Jung Kim ◽  
Shigeru Kotake ◽  
Tatsuo Itoh
2019 ◽  
Vol 20 (14) ◽  
pp. 3454 ◽  
Author(s):  
Marietta Herrmann ◽  
Maria Hildebrand ◽  
Ursula Menzel ◽  
Niamh Fahy ◽  
Mauro Alini ◽  
...  

(1) In vitro, bone marrow-derived stromal cells (BMSCs) demonstrate inter-donor phenotypic variability, which presents challenges for the development of regenerative therapies. Here, we investigated whether the frequency of putative BMSC sub-populations within the freshly isolated mononuclear cell fraction of bone marrow is phenotypically predictive for the in vitro derived stromal cell culture. (2) Vertebral body, iliac crest, and femoral head bone marrow were acquired from 33 patients (10 female and 23 male, age range 14–91). BMSC sub-populations were identified within freshly isolated mononuclear cell fractions based on cell-surface marker profiles. Stromal cells were expanded in monolayer on tissue culture plastic. Phenotypic assessment of in vitro derived cell cultures was performed by examining growth kinetics, chondrogenic, osteogenic, and adipogenic differentiation. (3) Gender, donor age, and anatomical site were neither predictive for the total yield nor the population doubling time of in vitro derived BMSC cultures. The abundance of freshly isolated progenitor sub-populations (CD45−CD34−CD73+, CD45−CD34−CD146+, NG2+CD146+) was not phenotypically predictive of derived stromal cell cultures in terms of growth kinetics nor plasticity. BMSCs derived from iliac crest and vertebral body bone marrow were more responsive to chondrogenic induction, forming superior cartilaginous tissue in vitro, compared to those isolated from femoral head. (4) The identification of discrete progenitor populations in bone marrow by current cell-surface marker profiling is not predictive for subsequently derived in vitro BMSC cultures. Overall, the iliac crest and the vertebral body offer a more reliable tissue source of stromal progenitor cells for cartilage repair strategies compared to femoral head.


1996 ◽  
Vol 39 (4) ◽  
pp. 629-637 ◽  
Author(s):  
Byung Ok Lee ◽  
Katsuhiko Ishihara ◽  
Kakuro Denno ◽  
Yoshiko Kobune ◽  
Motoyuki Itoh ◽  
...  

2020 ◽  
Author(s):  
Mary Mohrin ◽  
Justin Liu ◽  
Jose Zavala-Solorio ◽  
Sakshi Bhargava ◽  
John Maxwell Trumble ◽  
...  

AbstractReducing insulin-like growth factor (IGF) signaling is one of the best conserved and characterized mechanisms to extend longevity. Pregnancy associated plasma protein A (PAPP-A) is a secreted metalloprotease that increases IGF availability by cleaving IGF binding proteins. PAPP-A inhibition reduces local IGF signaling, limits the progression of multiple age-related diseases, and extends lifespan, but the mechanisms behind these pleiotropic effects remains unknown. Here, we developed and utilized a PAPP-A neutralizing antibody to discover that adulthood inhibition of this protease reduced collagen and extracellular matrix (ECM) gene expression in multiple tissues in mice. Using bone marrow to explore this effect, we identified mesenchymal stromal cells (MSCs) as the source of PAPP-A and primary responders to PAPP-A inhibition. Short-term treatment with anti-PAPP-A reduced IGF signaling in MSCs, altered MSC expression of collagen/ECM, and decreased MSC number. This affected MSC-dependent functions, decreasing myelopoiesis and osteogenesis. Our data demonstrate that PAPP-A inhibition reduces the activity and number of IGF-dependent mesenchymal progenitor cells and their differentiated progeny, and that this reduction leads to functional changes at the tissue level. MSC-like cells are present in virtually all tissues, and aberrant collagen and ECM production from mesenchymal cells drives aspects of aging and age-related diseases, thus this may be a mechanism by which PAPP-A deficiency enhances lifespan and healthspan.SummaryInhibition of PAPP-A, a regulator of IGF signaling, decreases multi-tissue collagen and extracellular matrix gene expression and modulates mesenchymal stromal cell activity in murine bone marrow.


2014 ◽  
Vol 9 (5) ◽  
pp. 593-607 ◽  
Author(s):  
Thomas G Baboolal ◽  
Sally A Boxall ◽  
Yasser M El-Sherbiny ◽  
Timothy A Moseley ◽  
Richard J Cuthbert ◽  
...  

Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1167-1175 ◽  
Author(s):  
Ben S. Lam ◽  
Cynthia Cunningham ◽  
Gregor B. Adams

Abstract The ability of hematopoietic stem cells (HSCs) to undergo self-renewal is partly regulated by external signals originating from the stem cell niche. Our previous studies with HSCs obtained from fetal liver of mice deficient for the calcium-sensing receptor (CaR) have shown the crucial role of this receptor in HSC lodgment and engraftment in the bone marrow (BM) endosteal niche. Using a CaR agonist, Cinacalcet, we assessed the effects of stimulating the CaR on the function of murine HSCs. Our results show that CaR stimulation increases primitive hematopoietic cell activity in vitro, including growth in stromal cell cocultures, adhesion to extracellular matrix molecules such as collagen I and fibronectin, and migration toward the chemotactic stimulus, stromal cell-derived factor 1α. Receptor stimulation also led to augmented in vivo homing, CXCR4-mediated lodgment at the endosteal niche, and engraftment capabilities. These mechanisms by which stimulating the CaR dictates preferential localization of HSCs in the BM endosteal niche provide additional insights into the fundamental interrelationship between the stem cell and its niche. These studies also have implications in the area of clinical stem cell transplantation, where ex vivo modulation of the CaR may be envisioned as a strategy to enhance HSC engraftment in the BM.


2012 ◽  
Vol 15 (2) ◽  
pp. 116 ◽  
Author(s):  
Ali Ghodsizad ◽  
Viktor Bordel ◽  
Brian Bruckner ◽  
Mathias Loebe ◽  
Gunter Fuerst ◽  
...  

The application of somatic stem cells has been shown to support the recovery of the myocardium in end-stage heart failure. A novel method for the intraoperative isolation and labeling of bone marrow-derived stem cells was established. After induction of general anesthesia, up to 400 mL of bone marrow were harvested from the posterior iliac crest and processed in the operating room under good manufacturing practice conditions by means of the automated cell-selection device Clini-MACS (Miltenyi Biotec). We subsequently injected autologous CD133<sup>+</sup> and CD34<sup>+</sup> stem cells in a predefined pattern around the laser channels in patients undergoing coronary artery bypass surgery and transmyocardial laser procedures. Intraoperative isolation and labeling is an effective cell-separation tool for the future, considering that novel cell markers can be promising new candidates for cell therapy.


Sign in / Sign up

Export Citation Format

Share Document