Thermodynamic and functional characteristics of deep-sea enzymes revealed by pressure effects

Extremophiles ◽  
2013 ◽  
Vol 17 (5) ◽  
pp. 701-709 ◽  
Author(s):  
Eiji Ohmae ◽  
Yurina Miyashita ◽  
Chiaki Kato
1991 ◽  
Vol 159 (1) ◽  
pp. 473-487 ◽  
Author(s):  
ELIZABETH DAHLHOFF ◽  
GEORGE N. SOMERO

Effects of temperature and hydrostatic pressure were measured on cytosolic malate dehydrogenases (cMDHs) from muscle tissue of a variety of shallow- and deep-living benthic marine invertebrates, including seven species endemic to the deep-sea hydrothermal vents. The apparent Michaelis-Menten constant (Km) of coenzyme (nicotinamide adenine dinucleotide, NADH), used to index temperature and pressure effects, was conserved within a narrow range (approximately 15–25 μmoll−1) at physiological temperatures and pressures for all species. However, at elevated pressures, the Km of NADH rose sharply for cMDHs of shallow species (depths of occurrence >Approximately 500 m), but not for the cMDHs of deep-sea species. Cytosolic MDHs of invertebrates from the deep-sea hydrothermal vents generally were not perturbed by elevated temperatures (15–25°C) at in situ pressures, but cMDHs of cold-adapted deep-sea species were. At a single measurement temperature, the Km of NADH for cMDHs from invertebrates from habitats with well-characterized temperatures was inversely related to maximal sustained body temperature. This correlation was used to predict the maximal sustained body temperatures of vent invertebrates for which maximal habitat and body temperatures are difficult to estimate. Species occurring on the ‘smoker chimneys’, which emit waters with temperatures up to 380°C, are predicted to have sustained body temperatures that are approximately 20–25°C higher than vent species living in cooler vent microhabitats. We conclude that, just as adaptation of enzymes to elevated pressures is important in establishing species’ depth distribution patterns, adaptation of pressure-adapted enzymes to temperature is critical in enabling certain vent species to exploit warm-water microhabitats in the vent environment.


2013 ◽  
Vol 10 (7) ◽  
pp. 4547-4563 ◽  
Author(s):  
J. Ingels ◽  
A. Vanreusel

Abstract. The urge to understand spatial distributions of species and communities and their causative processes has continuously instigated the development and testing of conceptual models in spatial ecology. For the deep sea, there is evidence that structural and functional characteristics of benthic communities are regulated by a multitude of biotic and environmental processes that act in concert on different spatial scales, but the spatial patterns are poorly understood compared to those for terrestrial ecosystems. Deep-sea studies generally focus on very limited scale ranges, thereby impairing our understanding of which spatial scales and associated processes are most important in driving structural and functional diversity of communities. Here, we used an extensive integrated dataset of free-living nematodes from deep-sea sediments to unravel the importance of different spatial scales in determining benthic infauna communities. Multiple-factor multivariate permutational analyses were performed on different sets of community descriptors (structure, structural and functional diversity, standing stock). The different spatial scales investigated cover two margins in the northeast Atlantic, several submarine canyons/channel/slope areas, a bathymetrical range of 700–4300 m, different sampling locations at each station, and vertical sediment profiles. The results indicated that the most important spatial scale for structural and functional diversity and standing stock variability is the smallest one; infauna communities changed substantially more with differences between sediment depth layers than with differences associated to larger geographical or bathymetrical scales. Community structure differences were greatest between stations at both margins. Important regulating ecosystem processes and the scale on which they occur are discussed. The results imply that, if we are to improve our understanding of ecosystem patterns of deep-sea infauna and the relevant processes driving their structure, structural and functional diversity, and standing stock, we must pay particular attention to the small-scale heterogeneity or patchiness and the causative mechanisms acting on that scale.


2019 ◽  
Vol 116 (3) ◽  
pp. 342a
Author(s):  
Ryan Penhallurick ◽  
J. Todd Hoopes ◽  
Toshiko Ichiye ◽  
Susana Teixeira

Author(s):  
Robert J. Menzies ◽  
Robert Y. George

SynopsisA diverse benthic and bathypelagic fauna was first incontrovertably established by the deep-sea samples of H.M.S.Challenger, and demonstrated the ability of organisms to live and reproduce in the deep, dark and cold abyssal environment of enormous hydrostatic pressure as high as 1000 atm (14 000 psi) on trench floors at 10 000 metres. The investigations of Regnard (1891), Fontaine (1930) and Ebbecke (1935) established that various shallow animals have the capacity to withstand increased hydrostatic pressure. This paper deals with the response of whole organisms, mainly shallow-water metazoans, to hydrostatic pressure-temperature effects. The level of occurrence of pressure-induced increased activity (R1), onset of paralysis or tetany (T) and LD50are discussed for tropical and temperate marine species in relationship to temperature and hydrostatic pressure. The pressure sensitivity and resistance exhibited by different species are examined in relation to various hypotheses and theories such as (1) group effect, in which Schlieper (1968) claims that those shallow species that belong to the group which has successfully colonised the deep sea, such as Echinodermata, Mollusca, Isopoda, have a higher pressure resistance; (2) pressure resistance as a species or genetic property; (3) environmental impact, in which deeper species have a greater pressure resistance; and (4) finally a re-examination of temperature and pressure effects as these relate to deep-sea colonisation.


IUCrJ ◽  
2014 ◽  
Vol 1 (6) ◽  
pp. 470-477 ◽  
Author(s):  
Nicholas J. Brooks

Membranes are amongst the most important biological structures; they maintain the fundamental integrity of cells, compartmentalize regions within them and play an active role in a wide range of cellular processes. Pressure can play a key role in probing the structure and dynamics of membrane assemblies, and is also critical to the biology and adaptation of deep-sea organisms. This article presents an overview of the effect of pressure on the mesostructure of lipid membranes, bilayer organization and lipid–protein assemblies. It also summarizes recent developments in high-pressure structural instrumentation suitable for experiments on membranes.


Sign in / Sign up

Export Citation Format

Share Document