Expression of GABAergic system in pulmonary neuroendocrine cells and airway epithelial cells in GAD67-GFP knock-in mice

2008 ◽  
Vol 41 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Yasuaki Yabumoto ◽  
Masahito Watanabe ◽  
Yuko Ito ◽  
Kentaro Maemura ◽  
Yoshinori Otsuki ◽  
...  
Science ◽  
2018 ◽  
Vol 360 (6393) ◽  
pp. eaan8546 ◽  
Author(s):  
Pengfei Sui ◽  
Darin L. Wiesner ◽  
Jinhao Xu ◽  
Yan Zhang ◽  
Jinwoo Lee ◽  
...  

Pulmonary neuroendocrine cells (PNECs) are rare airway epithelial cells whose function is poorly understood. Here we show that Ascl1-mutant mice that have no PNECs exhibit severely blunted mucosal type 2 response in models of allergic asthma. PNECs reside in close proximity to group 2 innate lymphoid cells (ILC2s) near airway branch points. PNECs act through calcitonin gene-related peptide (CGRP) to stimulate ILC2s and elicit downstream immune responses. In addition, PNECs act through the neurotransmitter γ-aminobutyric acid (GABA) to induce goblet cell hyperplasia. The instillation of a mixture of CGRP and GABA in Ascl1-mutant airways restores both immune and goblet cell responses. In accordance, lungs from human asthmatics show increased PNECs. These findings demonstrate that the PNEC-ILC2 neuroimmunological modules function at airway branch points to amplify allergic asthma responses.


Pneumologie ◽  
2015 ◽  
Vol 69 (07) ◽  
Author(s):  
S Ulrich ◽  
S Weinreich ◽  
R Haller ◽  
S Menke ◽  
R Olmer ◽  
...  

2010 ◽  
Vol 243 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Aida Ibricevic ◽  
Steven L. Brody ◽  
Wiley J. Youngs ◽  
Carolyn L. Cannon

2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
L Falcone ◽  
E Aruffo ◽  
P Di Carlo ◽  
P Del Boccio ◽  
M C Cufaro ◽  
...  

Abstract Background Reactive oxygen species (ROS) and oxidative stress in the respiratory system are involved in lung inflammation and tumorigenesis. Ozone (O3) is one of the main components of air pollution in urban areas able to act as strong pro-oxidant agent, however its effects on human health is still poorly investigated. In this study the effect of O3 has been evaluated in THP-1 monocytes differentiated into macrophages with PMA and in HBEpC (primary human bronchial epithelial) cells, two model systems for in vitro studies and translational research. Methods Cell viability, ROS and pro-inflammatory cytokines like interleukin-8(IL-8) and tumor necrosis factor(TNF-α) have been tested in the above-mentioned cell lines not exposed to any kind of pollution (basal condition-b.c.) or exposed to O3 at a concentration of 120 ppb. In HBEpC a labelfree shotgun proteomics analysis has been also performed in the same conditions. Results Ozone significantly increased the production of IL-8 and TNF-α in THP-1 whereas no changes were shown in HBEpC. In both cell lines lipopolysaccharide(LPS) caused an increase of IL-8 and TNF-α production in b.c. and O3 treatment potentiated this effect. Ozone exposure increased ROS formation in a time dependent manner in both cell lines and in THP-1 cells a decrease in catalase activity was also shown. Finally, according to these data, functional proteomics analysis revealed that in HBEpC exposure to O3 many differential proteins are related to oxidative stress and inflammation. Conclusions Our results indicate that O3, at levels that can be reached in urban areas, causes an increase of pro-inflammatory agents either per se or potentiating the effect of immune response stimulators in cell models of human macrophages and human airway epithelial cells. Interestingly, the proteomic analysis showed that besides the dysregulated proteins, O3 induced the expression of AKR1D1 and AKR1B10, proteins recognized to play a significant role in cancer development. Key messages This study adds new pieces of information on the association between O3 exposure and detrimental effects on respiratory system. This study suggests the need for further research on the mechanisms involved and for a continued monitoring/re-evaluation of air pollution standards aimed at safeguarding human health.


Sign in / Sign up

Export Citation Format

Share Document