scholarly journals Ozone effect on inflammatory and proteomic profile of human macrophages and airway epithelial cells

2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
L Falcone ◽  
E Aruffo ◽  
P Di Carlo ◽  
P Del Boccio ◽  
M C Cufaro ◽  
...  

Abstract Background Reactive oxygen species (ROS) and oxidative stress in the respiratory system are involved in lung inflammation and tumorigenesis. Ozone (O3) is one of the main components of air pollution in urban areas able to act as strong pro-oxidant agent, however its effects on human health is still poorly investigated. In this study the effect of O3 has been evaluated in THP-1 monocytes differentiated into macrophages with PMA and in HBEpC (primary human bronchial epithelial) cells, two model systems for in vitro studies and translational research. Methods Cell viability, ROS and pro-inflammatory cytokines like interleukin-8(IL-8) and tumor necrosis factor(TNF-α) have been tested in the above-mentioned cell lines not exposed to any kind of pollution (basal condition-b.c.) or exposed to O3 at a concentration of 120 ppb. In HBEpC a labelfree shotgun proteomics analysis has been also performed in the same conditions. Results Ozone significantly increased the production of IL-8 and TNF-α in THP-1 whereas no changes were shown in HBEpC. In both cell lines lipopolysaccharide(LPS) caused an increase of IL-8 and TNF-α production in b.c. and O3 treatment potentiated this effect. Ozone exposure increased ROS formation in a time dependent manner in both cell lines and in THP-1 cells a decrease in catalase activity was also shown. Finally, according to these data, functional proteomics analysis revealed that in HBEpC exposure to O3 many differential proteins are related to oxidative stress and inflammation. Conclusions Our results indicate that O3, at levels that can be reached in urban areas, causes an increase of pro-inflammatory agents either per se or potentiating the effect of immune response stimulators in cell models of human macrophages and human airway epithelial cells. Interestingly, the proteomic analysis showed that besides the dysregulated proteins, O3 induced the expression of AKR1D1 and AKR1B10, proteins recognized to play a significant role in cancer development. Key messages This study adds new pieces of information on the association between O3 exposure and detrimental effects on respiratory system. This study suggests the need for further research on the mechanisms involved and for a continued monitoring/re-evaluation of air pollution standards aimed at safeguarding human health.

2014 ◽  
Vol 46 (17) ◽  
pp. 634-646 ◽  
Author(s):  
Grégory Voisin ◽  
Guillaume F. Bouvet ◽  
Pierre Legendre ◽  
André Dagenais ◽  
Chantal Massé ◽  
...  

Although cystic fibrosis (CF) pathophysiology is explained by a defect in CF transmembrane conductance regulator (CFTR) protein, the broad spectrum of disease severity is the consequence of environmental and genetic factors. Among them, oxidative stress has been demonstrated to play an important role in the evolution of this disease, with susceptibility to oxidative damage, decline of pulmonary function, and impaired lung antioxidant defense. Although oxidative stress has been implicated in the regulation of inflammation, its molecular outcomes in CF cells remain to be evaluated. To address the question, we compared the gene expression profile in NuLi-1 cells with wild-type CFTR and CuFi-1 cells homozygous for ΔF508 mutation cultured at air-liquid interface. We analyzed the transcriptomic response of these cell lines with microarray technology, under basal culture conditions and after 24 h oxidative stress induced by 15 μM 2,3-dimethoxy-1,4-naphtoquinone. In the absence of oxidative conditions, CuFi-1 gene profiling showed typical dysregulated inflammatory responses compared with NuLi-1. In the presence of oxidative conditions, the transcriptome of CuFi-1 cells reflected apoptotic transcript modulation. These results were confirmed in the CFBE41o- and corrCFBE41o- cell lines as well as in primary culture of human CF airway epithelial cells. Altogether, our data point to the influence of oxidative stress on cell survival functions in CF and identify several genes that could be implicated in the inflammation response observed in CF patients.


Sarcoma ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Patrick J. Messerschmitt ◽  
Ashley N. Rettew ◽  
Nicholas O. Schroeder ◽  
Robert E. Brookover ◽  
Avanti P. Jakatdar ◽  
...  

β-nitrostyrene compounds, such as 3,4-methylenedioxy-β-nitrostyrene (MNS), inhibit growth and induce apoptosis in tumor cells, but no reports have investigated their role in osteosarcoma. In this study, human osteosarcoma cell families with cell lines of varying tumorigenic and metastatic potential were utilized. Scrape motility assays, colony formation assays, and colony survival assays were performed with osteosarcoma cell lines, both in the presence and absence of MNS. Effects of MNS on human osteoblasts and airway epithelial cells were assessed in monolayer cultures. MNS decreased metastatic cell line motility by 72–76% and colony formation by 95–100%. MNS consistently disrupted preformed colonies in a time-dependent and dose-dependent manner. MNS had similar effects on human osteoblasts but little effect on airway epithelial cells. An inactive analog of MNS had no detectable effects, demonstrating specificity. MNS decreases motility and colony formation of osteosarcoma cells and disrupts preformed cell colonies, while producing little effect on pulmonary epithelial cells.


2020 ◽  
Vol 177 (1) ◽  
pp. 248-262
Author(s):  
Kaitlin M Pearce ◽  
Imoh Okon ◽  
Christa Watson-Wright

Abstract Engineered metal nanoparticles (ENPs) are frequently incorporated into aerosolized consumer products, known as nano-enabled products (NEPs). Concern for consumer pulmonary exposures grows as NEPs produce high concentrations of chemically modified ENPs. A significant knowledge gap still exists surrounding NEP aerosol respiratory effects as previous research focuses on pristine/unmodified ENPs. Our research evaluated metal-containing aerosols emitted from nano-enabled cosmetics and their induction of oxidative stress and DNA damage, which may contribute to epithelial mesenchymal transitions (EMT) within primary human small airway epithelial cells. We utilized an automated NEP generation system to monitor and gravimetrically collect aerosols from two aerosolized cosmetic lines. Aerosol monitoring data were inputted into modeling software to determine potential inhaled dose and in vitro concentrations. Toxicological profiles of aerosols and comparable pristine ENPs (TiO2 and Fe2O3) were used to assess reactive oxygen species and oxidative stress by fluorescent-based assays. Single-stranded DNA (ssDNA) damage and 8-oxoguanine were detected using the CometChip assay after 24-h exposure. Western blots were conducted after 21-day exposure to evaluate modulation of EMT markers. Results indicated aerosols possessed primarily ultrafine particles largely depositing in tracheobronchial lung regions. Significant increases in oxidative stress, ssDNA damage, and 8-oxoguanine were detected post-exposure to aerosols versus pristine ENPs. Western blots revealed statistically significant decreases in E-cadherin and increases in vimentin, fascin, and CD44 for two aerosols, indicating EMT. This work suggests certain prolonged NEP inhalation exposures cause oxidative DNA damage, which may play a role in cellular changes associated with reduced respiratory function and should be of concern.


2013 ◽  
Vol 28 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Md. Asaduzzaman Sikder ◽  
Hyun Jae Lee ◽  
Md. Zakaria Mia ◽  
Su Hyun Park ◽  
Jiho Ryu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document