scholarly journals QM/MM study of the binding of H2 to MoCu CO dehydrogenase: development and applications of improved H2 van der Waals parameters

2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Anna Rovaletti ◽  
Claudio Greco ◽  
Ulf Ryde

AbstractThe MoCu CO dehydrogenase enzyme not only transforms CO into CO2 but it can also oxidise H2. Even if its hydrogenase activity has been known for decades, a debate is ongoing on the most plausible mode for the binding of H2 to the enzyme active site and the hydrogen oxidation mechanism. In the present work, we provide a new perspective on the MoCu-CODH hydrogenase activity by improving the in silico description of the enzyme. Energy refinement—by means of the BigQM approach—was performed on the intermediates involved in the dihydrogen oxidation catalysis reported in our previously published work (Rovaletti, et al. “Theoretical Insights into the Aerobic Hydrogenase Activity of Molybdenum–Copper CO Dehydrogenase.” Inorganics 7 (2019) 135). A suboptimal description of the H2–HN(backbone) interaction was observed when the van der Waals parameters described in previous literature for H2 were employed. Therefore, a new set of van der Waals parameters is developed here in order to better describe the hydrogen–backbone interaction. They give rise to improved binding modes of H2 in the active site of MoCu CO dehydrogenase. Implications of the resulting outcomes for a better understanding of hydrogen oxidation catalysis mechanisms are proposed and discussed.

Inorganics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 135
Author(s):  
Anna Rovaletti ◽  
Maurizio Bruschi ◽  
Giorgio Moro ◽  
Ugo Cosentino ◽  
Claudio Greco ◽  
...  

The Mo/Cu-dependent CO dehydrogenase from O. carboxydovorans is an enzyme that is able to catalyse CO oxidation to CO 2 ; moreover, it also expresses hydrogenase activity, as it is able to oxidize H 2 . Here, we have studied the dihydrogen oxidation catalysis by this enzyme using QM/MM calculations. Our results indicate that the equatorial oxo ligand of Mo is the best suited base for catalysis. Moreover, extraction of the first proton from H 2 by means of this basic centre leads to the formation of a Mo–OH–Cu I H hydride that allows for the stabilization of the copper hydride, otherwise known to be very unstable. In light of our results, two mechanisms for the hydrogenase activity of the enzyme are proposed. The first reactive channel depends on protonation of the sulphur atom of a Cu-bound cysteine residues, which appears to favour the binding and activation of the substrate. The second reactive channel involves a frustrated Lewis pair, formed by the equatorial oxo group bound to Mo and by the copper centre. In this case, no binding of the hydrogen molecule to the Cu center is observed but once H 2 enters into the active site, it can be split following a low-energy path.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4494
Author(s):  
Yang Lin ◽  
Heyanhao Zhang ◽  
Tong Niu ◽  
Mei-Lin Tang ◽  
Jun Chang

The discovery of IDO1 and HDAC1 dual inhibitors may provide a novel strategy for cancer treatment by taking advantages of both immunotherapeutic and epigenetic drugs. In this paper, saprorthoquinone (1) and 13 of its analogues from Salvia prionitis Hance were investigated for their SAR against IDO1, the results demonstrated the ortho-quinone was a key pharmacophore. Then a series of IDO1 and HDAC dual inhibitors connected by appropriate linkers were designed, synthesized, and evaluated from the hit compound saprorthoquinone (1). Among them, compound 33d showed balanced activity against both IDO1 (IC50 = 0.73 μM) and HDAC1 (IC50 = 0.46 μM). Importantly, the structure of 33d suggested that an ortho-quinone pharmacophore and a N-(2-aminophenyl) amide pharmacophore were necessary for the IDO inhibition and HDAC inhibition respectively. Meanwhile, these two pharmacophore groups should be combined by a pentane linker. Moreover, the binding modes of 33d to the enzyme active site showed that the hydrogen bond with Leu234 of IDO1 appeared to confer increased potency to this class of inhibitors, which may explain the higher activity of 33d. This study provides a new strategy for future IDO1/HDAC dual inhibitors with synergistic antitumor activity started from lead compound 33d.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1679
Author(s):  
Vishnu Mohan ◽  
Jean P. Gaffney ◽  
Inna Solomonov ◽  
Maxim Levin ◽  
Mordehay Klepfish ◽  
...  

Matrix metalloproteases (MMPs) undergo post-translational modifications including pro-domain shedding. The activated forms of these enzymes are effective drug targets, but generating potent biological inhibitors against them remains challenging. We report the generation of anti-MMP-7 inhibitory monoclonal antibody (GSM-192), using an alternating immunization strategy with an active site mimicry antigen and the activated enzyme. Our protocol yielded highly selective anti-MMP-7 monoclonal antibody, which specifically inhibits MMP-7′s enzyme activity with high affinity (IC50 = 132 ± 10 nM). The atomic model of the MMP-7-GSM-192 Fab complex exhibited antibody binding to unique epitopes at the rim of the enzyme active site, sterically preventing entry of substrates into the catalytic cleft. In human PDAC biopsies, tissue staining with GSM-192 showed characteristic spatial distribution of activated MMP-7. Treatment with GSM-192 in vitro induced apoptosis via stabilization of cell surface Fas ligand and retarded cell migration. Co-treatment with GSM-192 and chemotherapeutics, gemcitabine and oxaliplatin elicited a synergistic effect. Our data illustrate the advantage of precisely targeting catalytic MMP-7 mediated disease specific activity.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1004
Author(s):  
Mahmoud A. El Hassab ◽  
Mohamed Fares ◽  
Mohammed K. Abdel-Hamid Amin ◽  
Sara T. Al-Rashood ◽  
Amal Alharbi ◽  
...  

Since December 2019, the world has been facing the outbreak of the SARS-CoV-2 pandemic that has infected more than 149 million and killed 3.1 million people by 27 April 2021, according to WHO statistics. Safety measures and precautions taken by many countries seem insufficient, especially with no specific approved drugs against the virus. This has created an urgent need to fast track the development of new medication against the virus in order to alleviate the problem and meet public expectations. The SARS-CoV-2 3CL main protease (Mpro) is one of the most attractive targets in the virus life cycle, which is responsible for the processing of the viral polyprotein and is a key for the ribosomal translation of the SARS-CoV-2 genome. In this work, we targeted this enzyme through a structure-based drug design (SBDD) protocol, which aimed at the design of a new potential inhibitor for Mpro. The protocol involves three major steps: fragment-based drug design (FBDD), covalent docking and molecular dynamics (MD) simulation with the calculation of the designed molecule binding free energy at a high level of theory. The FBDD step identified five molecular fragments, which were linked via a suitable carbon linker, to construct our designed compound RMH148. The mode of binding and initial interactions between RMH148 and the enzyme active site was established in the second step of our protocol via covalent docking. The final step involved the use of MD simulations to test for the stability of the docked RMH148 into the Mpro active site and included precise calculations for potential interactions with active site residues and binding free energies. The results introduced RMH148 as a potential inhibitor for the SARS-CoV-2 Mpro enzyme, which was able to achieve various interactions with the enzyme and forms a highly stable complex at the active site even better than the co-crystalized reference.


2013 ◽  
Vol 454 (3) ◽  
pp. 387-399 ◽  
Author(s):  
Patrick Masson ◽  
Sofya Lushchekina ◽  
Lawrence M. Schopfer ◽  
Oksana Lockridge

CSP (cresyl saligenin phosphate) is an irreversible inhibitor of human BChE (butyrylcholinesterase) that has been involved in the aerotoxic syndrome. Inhibition under pseudo-first-order conditions is biphasic, reflecting a slow equilibrium between two enzyme states E and E′. The elementary constants for CSP inhibition of wild-type BChE and D70G mutant were determined by studying the dependence of inhibition kinetics on viscosity and osmotic pressure. Glycerol and sucrose were used as viscosogens. Phosphorylation by CSP is sensitive to viscosity and is thus strongly diffusion-controlled (kon≈108 M−1·min−1). Bimolecular rate constants (ki) are about equal to kon values, making CSP one of the fastest inhibitors of BChE. Sucrose caused osmotic stress because it is excluded from the active-site gorge. This depleted the active-site gorge of water. Osmotic activation volumes, determined from the dependence of ki on osmotic pressure, showed that water in the gorge of the D70G mutant is more easily depleted than that in wild-type BChE. This demonstrates the importance of the peripheral site residue Asp70 in controlling the active-site gorge hydration. MD simulations provided new evidence for differences in the motion of water within the gorge of wild-type and D70G enzymes. The effect of viscosogens/osmolytes provided information on the slow equilibrium E⇌E′, indicating that alteration in hydration of a key catalytic residue shifts the equilibrium towards E′. MD simulations showed that glycerol molecules that substitute for water molecules in the enzyme active-site gorge induce a conformational change in the catalytic triad residue His438, leading to the less reactive form E′.


Blood ◽  
2003 ◽  
Vol 102 (8) ◽  
pp. 3028-3034 ◽  
Author(s):  
Soohee Lee ◽  
Asim K. Debnath ◽  
Colvin M. Redman

Abstract In addition to its importance in transfusion, Kell protein is a member of the M13 family of zinc endopeptidases and functions as an endothelin-3–converting enzyme. To obtain information on the structure of Kell protein we built a model based on the crystal structure of the ectodomain of neutral endopeptidase 24.11 (NEP). Similar to NEP, the Kell protein has 2 globular domains consisting mostly of α-helical segments. The domain situated closest to the membrane contains both the N- and C-terminal sequences and the enzyme-active site. The outer domain contains all of the amino acids whose substitutions lead to different Kell blood group phenotypes. In the model, the zinc peptidase inhibitor, phosphoramidon, was docked in the active site. Site-directed mutagenesis of amino acids in the active site was performed and the enzymatic activities of expressed mutant Kell proteins analyzed and compared with NEP. Our studies indicate that Kell and NEP use the same homologous amino acids in the coordination of zinc and in peptide hydrolysis. However, Kell uses different amino acids than NEP in substrate binding and appears to have more flexibility in the composition of amino acids allowed in the active site.


2016 ◽  
Author(s):  
◽  
Kasi Viswanatharaju Ruddraraju

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Protein tyrosine phosphatase 1B (PTP1B) is a validated target for the treatment of type 2 diabetes and obesity. The discovery of selective inhibitors with drug-like properties has proven to be challenging because there are [about]80 PTP family members that share a similar and positively charged active site. To overcome these challenges, we have pursued two novel approaches for the covalent inactivation of PTP1B. Exo-affinity labeling agents exploit covalent reactions with amino acids outside the enzyme active site to gain both affinity and selectivity. We prepared several affinity labeling agents using a 12-step convergent synthesis. Enzyme assays revealed that some of these agents are capable of inactivating the enzyme by covalent modification. In another project, we prepared a low molecular weight mimic of the oxidized form of PTP1B that is generated in cells, during insulin signaling events. Seeking molecules capable of covalent capture of oxidized PTP1B, we treated this chemical model with several carbon nucleophiles, such as 1,3-diketones and sulfone-stabilized carbon anions. These carbon nucleophiles readily reacted with the model compound, under mild conditions to give stable adducts. Inactivation experiments revealed that 1,3-diketones are capable of inactivating the oxidized PTP1B at micromolar concentrations.


2018 ◽  
Vol 16 (06) ◽  
pp. 1850027
Author(s):  
Quanfeng Liu ◽  
Liping Li ◽  
Fei Xu

Shikimate pathway plays an essential role in the biosynthesis of aromatic amino acids in various plants and bacteria, which consists of seven key enzymes and they are all attractive targets for antibacterial agent development due to their absence in humans. The Staphylococcus aureus dehydroquinate synthase (SaDHQS) is involved in the second step of shikimate pathway, which catalyzes the NAD[Formula: see text]-dependent conversion of 3-deoxy-D-arabino-heptulosonate-7-phosphate to dehydroquinate via multiple steps. The enzyme active site can be characterized by two spatially separated subpockets 1 and 2, which represent the reaction center of substrate adduct with NAD[Formula: see text] nicotinamide moiety and the assistant binding site of NAD[Formula: see text] adenine moiety, respectively. In silico virtual screening is performed against a biogenic compound library to discover SaDHQS subpocket-specific inhibitors, which were then tested against both antibiotic-sensitive and antibiotic-resistant S. aureus strains by using in vitro susceptibility test. The activity profile of hit compounds has no considerable difference between the antibiotic-sensitive and -resistant strains. The subpocket 1-specific inhibitors exhibit a generally higher activity than subpocket 2-specific inhibitors, and they also hold a strong selectivity between their cognate and noncognate subpockets. Dynamics and energetics analyses reveal that the SaDHQS active site prefers to interact with amphipathic and polar inhibitors by forming multiple hydrogen bonds and van der Waals packing at the complex interfaces of the two subpockets with their cognate inhibitors.


Sign in / Sign up

Export Citation Format

Share Document