Inferring Physical Parameters from Images of Vibrating Carbon Nanotubes

2000 ◽  
Vol 6 (4) ◽  
pp. 317-323 ◽  
Author(s):  
M.M.J. Treacy ◽  
A. Krishnan ◽  
P.N. Yianilos

Abstract We describe a hidden parameter inferencing algorithm for deducing the length, width, and vibration profile from images of thermally excited single-wall carbon nanotubes. With accurate estimates of these parameters, the Young’s modulus can be deduced. The algorithm is sensitive to shot noise in the image, primarily because of the low nanotube image contrast. Noise causes the nanotube length and width to be overestimated, and the vibration amplitude to be underestimated. After correcting for shot noise, we infer an average value of the Young’s modulus of 〈Y〉= 1.20±0.20 TPa, which is larger than the currently accepted value for graphite.

2000 ◽  
Vol 6 (4) ◽  
pp. 317-323 ◽  
Author(s):  
M.M.J. Treacy ◽  
A. Krishnan ◽  
P.N. Yianilos

AbstractWe describe a hidden parameter inferencing algorithm for deducing the length, width, and vibration profile from images of thermally excited single-wall carbon nanotubes. With accurate estimates of these parameters, the Young’s modulus can be deduced. The algorithm is sensitive to shot noise in the image, primarily because of the low nanotube image contrast. Noise causes the nanotube length and width to be overestimated, and the vibration amplitude to be underestimated. After correcting for shot noise, we infer an average value of the Young’s modulus of 〈Y〉= 1.20±0.20 TPa, which is larger than the currently accepted value for graphite.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5872-5877 ◽  
Author(s):  
JEEHYANG HUH ◽  
HOON HUH

Simulations of single-wall carbon nanotube(SWCNT)s having a different chiral vector under axial compression were carried out based on molecular dynamics to investigate the effect of the helicity on the buckling behavior. Calculation was performed at room temperature for (8,8) armchair, (14,0) zigzag and (6,10) chiral single-wall carbon nanotubes. The Tersoff potential was used as the interatomic potential since it describes the C - C bonds in carbon nanotubes reliably. A conjugate gradient (CG) method was used to obtain the equilibrium configuration. Compressive force was applied at the top of a nanotube by moving the top-most atoms downward with the constant velocity of 10m/s. The buckling load, the critical strain, and the Young's modulus were calculated from the result of MD simulation. A zigzag carbon nanotube has the largest Young's modulus and buckling load, while a chiral carbon nonotube has the lowest values.


Author(s):  
Konstantin Gusev ◽  
Vjaceslavs Gerbreders ◽  
Andrejs Ogurcovs ◽  
Vladimir Solovyev

Experimental investigations of single-wall carbon nanotubes (CNT) effect on the mechanical properties of polymeric composite materials based on epoxy matrix have been carried out. It has been found that addition of CNT at low concentration dramatically increases tensile strength (20 – 30 per cent growth) and Young’s modulus of the samples under study. Structure of polymeric composites with CNT was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM images of the samples under study confirm strong interaction between polymeric matrix and nano-additives, demonstrating intimate contact between CNT and epoxy surroundings which is of great importance for composite material reinforcement. Dependences of tensile strength and those of Young’s modulus on CNT concentration are discussed using micromechanics models for nanocomposites.


2013 ◽  
Vol 761 ◽  
pp. 83-86
Author(s):  
Hideaki Sano ◽  
Junichi Morisaki ◽  
Guo Bin Zheng ◽  
Yasuo Uchiyama

Effects of carbon nanotubes (CNT) addition on mechanical properties, electric conductivity and oxidation resistance of CNT/Al2O3-TiC composite were investigated. It was found that flexural strength, Young’s modulus and fracture toughness of the composites were improved by addition of more than 2 vol%-CNT. In the composites with more than 3 vol%-CNT, the oxidation resistance of the composite was degraded. In comparison with Al2O3-26vol%TiC sample as TiC particle-percolated sample, the Al2O3-12vol%TiC-3vol%CNT sample, which is not TiC particle-percolated sample, shows almost the same mechanical properties and electric conductivity, and also shows thinner oxidized region after oxidation at 1200°C due to less TiC in the composite.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878528 ◽  
Author(s):  
Zirong Luo ◽  
Xin Li ◽  
Jianzhong Shang ◽  
Hong Zhu ◽  
Delei Fang

A modified rule of mixtures is required to account for the experimentally observed nonlinear variation of tensile strength. A modified Halpin–Tsai model was presented to predict the Young’s modulus of multiscale reinforced composites with both micron-sized and nano-sized reinforcements. In the composites, both micron-sized fillers—carbon fibers—and nano-sized fillers—rubber nanoparticles and carbon nanotubes—are added into the epoxy resin matrix. Carbon fibers can help epoxy resins increase both the tensile strength and Young’s modulus, while rubber nanoparticles and carbon nanotubes can improve the toughness without sacrificing other properties. Mechanical experiments and scanning electron microscopy observations were used to study the effects of the micron-sized and nano-sized reinforcements and their combination on tensile and toughness properties of the composites. The results showed that the combined use of multiscale reinforcements had synergetic effects on both the strength and the toughness of the composites.


Sign in / Sign up

Export Citation Format

Share Document