Solid-state graphene-based supercapacitor with high-density energy storage using ionic liquid gel electrolyte: electrochemical properties and performance in storing solar electricity

2019 ◽  
Vol 23 (6) ◽  
pp. 1667-1683 ◽  
Author(s):  
Amr M. Obeidat ◽  
Vandna Luthra ◽  
A. C. Rastogi
Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 788
Author(s):  
Xin Guan ◽  
Lujun Pan ◽  
Zeng Fan

Lightweight energy storage devices with high mechanical flexibility, superior electrochemical properties and good optical transparency are highly desired for next-generation smart wearable electronics. The development of high-performance flexible and transparent electrodes for supercapacitor applications is thus attracting great attention. In this work, we successfully developed flexible, transparent and highly conductive film electrodes based on a conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The PEDOT:PSS film electrodes were prepared via a simple spin-coating approach followed by a post-treatment with a salt solution. After treatment, the film electrodes achieved a high areal specific capacitance (3.92 mF/cm2 at 1 mA/cm2) and long cycling lifetime (capacitance retention >90% after 3000 cycles) with high transmittance (>60% at 550 nm). Owing to their good optoelectronic and electrochemical properties, the as-assembled all-solid-state device for which the PEDOT:PSS film electrodes were utilized as both the active electrode materials and current collectors also exhibited superior energy storage performance over other PEDOT-based flexible and transparent symmetric supercapacitors in the literature. This work provides an effective approach for producing high-performance, flexible and transparent polymer electrodes for supercapacitor applications. The as-obtained polymer film electrodes can also be highly promising for future flexible transparent portable electronics.


2020 ◽  
Author(s):  
Dmitrii A. Rakov ◽  
Fangfang Chen ◽  
Shammi A. Ferdousi ◽  
Hua Li ◽  
Thushan Pathirana ◽  
...  

<div> <div> <div> <p>Non-uniform metal deposition and dendrite formation in high density energy storage devices reduces the efficiency, safety, and life of batteries with metal anodes. Superconcentrated ionic liquid (IL) electrolytes (e.g. 1:1 IL:alkali ion) coupled with anode preconditioning at more negative potentials can completely mitigate these issues, and therefore revolutionize high density energy storage devices. However, the mechanisms by which very high salt concentration and preconditioning potential enable uniform metal deposition and prevent dendrite formation at the metal anode during cycling are poorly understood, and therefore not optimized. Here, we use </p> </div> </div> </div> <div> <div> <div> <p>atomic-force microscopy and molecular dynamics simulations to unravel the influence of these factors on the interface chemistry in a sodium electrolyte, demonstrating how a molten salt like structure at the electrode surface results in dendrite free metal cycling at higher rates. Such a structure will support the formation of a more favorable solid electrolyte interphase (SEI) accepted as being a critical factor in stable battery cycling. This new understanding will enable engineering of efficient anode electrodes by tuning interfacial nanostructure via salt concentration and high voltage preconditioning. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document