scholarly journals Influence of process parameters on the residual stress state and properties in disc springs made by incremental sheet forming (ISF)

Author(s):  
Muhammad Junaid Afzal ◽  
Ramin Hajavifard ◽  
Johannes Buhl ◽  
Frank Walther ◽  
Markus Bambach

AbstractDisc springs are machine elements that are used when high forces need to be supplied and in limited installation space. They need to fulfil high demands on the stability of the spring characteristics, reliability and lifetime. In corrosive environments, metastable austenitic stainless steels (MASS) disc springs are often used. Tensile stresses that occur during service limit the lifetime of disc springs. Usually, their durability is enhanced by generating favorable compressive residual stresses using shot peening operations. Such operations lead to extra efforts and additional production costs. In this study, the adaptive and targeted generation of residual stresses via incremental sheet forming (ISF) is investigated as alternative to shot peening focusing on EN 1.4310 and EN 1.4401 stainless steel. Previous work has shown that ISF is capable of controlling the radial and tangential stresses in the springs. However, no analysis of the influence of the residual stress state in the rolled sheet strips and the ISF process parameters was performed. The goal of the current work is to analyze the evolution of residual stress during rolling and subsequent incremental forming of disc springs. In order to examine the role of dissipation and temperature increases in the rolling process, sheet blanks rolled at room and elevated temperature are analyzed. The characteristics of the compressive residual stresses induced by ISF are studied for different process parameters. X‑ray diffraction is used to investigate the buildup of these stresses. Using ISF, the generation of compressive residual stresses can be integrated into the forming process of disc springs, and further post-treatment may be skipped. The results show that the residual stress state in the rolled material is crucial, which requires tight control of the rolling temperature. Another result is that ISF is able to yield high compressive residual stresses and improved spring characteristics when small tool diameters and step-down values are used.

Author(s):  
Fawad Maqbool ◽  
Fabian Maaß ◽  
Johannes Buhl ◽  
Marlon Hahn ◽  
Ramin Hajavifard ◽  
...  

AbstractThe mechanical properties and the operating life of a formed component are highly dependent on the residual stress state. There is always a high magnitude of residual stresses in the components formed by incremental sheet forming (ISF) due to the localized deformation mechanism. Hence, a thorough understanding of the generation of the residual stresses by ISF is necessary. This study investigates the residual stress generation mechanism for two process variants of ISF, i.e., Single Point Incremental Forming (SPIF) and Two Point Incremental Forming (TPIF). This understanding is used to control and targetedly generate the residual stresses to improve the part performance. In this regard, the residual stress state in a truncated cone geometry manufactured using SPIF and disc springs manufactured using TPIF was experimentally analyzed. Validated numerical models for both process variants were developed to study the residual stresses in detail. The residual stress state in SPIF is such that the tool contact side develops tensile residual stresses and the non-contact side undergoes compressive residual stresses. The tool step-down variation was used to control residual stresses and improve the fatigue strength of truncated cones manufactured using SPIF. For TPIF, two different forming strategies were used to analyze the residual stress generation mechanism and the role of major process parameters. The residual stresses for TPIF are pre-dominantly compressive in both directions of forming tool motion. For both process variants of the ISF process, it is shown that the residual stresses can be beneficially utilized to improve mechanical properties of the components.


2019 ◽  
Vol 3 (3) ◽  
pp. 56 ◽  
Author(s):  
Nataliya Lyubenova ◽  
Dirk Bähre ◽  
Lukas Krupp ◽  
Julie Fouquet ◽  
Titouan Cronier ◽  
...  

Mechanical surface treatments, e.g., deep rolling, are widely spread finishing processes due to their ability to enhance the fatigue strength of the treated materials with means of cold working and inducement of favorable compressive residual stresses. Despite of the clear advantages of deep rolling, the controlled generation of compressive residual stresses is still a challenging task, as the process can be influenced by the pre-machining stress state of the treated material. Additionally, the exact characterization of the induced residual stress field is impacted by the specific characteristics of the applied measurement technique. Therefore, this paper is focused on the X-ray diffraction residual stress analysis of deep rolled specimens, pre-machined to achieve rough or polished surface. The deep rolling process was realized as a single-trace to avoid the influence of the other process parameters and the resulted residual stress field on the surface and in depth was investigated. Additionally, the surface residual stress profiles were determined using two different measuring devices to analyze the impact of the different measurement conditions.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 656 ◽  
Author(s):  
Fabian Maaß ◽  
Marlon Hahn ◽  
A. Erman Tekkaya

The residual stress state of a sheet metal component manufactured by metal forming has a significant influence on the mechanical properties, and thus determines the time until the component fails, especially for dynamic loads. The origin of the resulting residual stress state of incrementally formed parts with regard to the forming mechanisms of shearing, bending, and the normal stress component is still under investigation. The relationship between the process parameters, the forming mechanisms, and the resulting residual stress state for a complex part geometry manufactured by single point incremental forming (SPIF) is presented in this publication. For this purpose, a validated numerical process model is used to analyze the influence of the step-down increment Δz for truncated cones on the characteristics of the forming mechanisms and the resulting residual stress state. For the first time the forming mechanisms are evaluated numerically on both sides of the formed component. A relationship between the process parameters, forming mechanisms, residual stresses, and the mechanical properties of an incrementally formed component is shown. Shearing-induced hardening is identified as a relevant influence on the residual stress state of cones.


1999 ◽  
Vol 33 (1-4) ◽  
pp. 291-301 ◽  
Author(s):  
A. Pyzalla ◽  
W. Reimers

The residual stress state and the texture of cold forward extruded full and hollow steel bodies as well as a hot extruded AlSi25Cu4Mg1 tube are studied by X-ray, high energy synchrotron and neutron diffraction. The experimental results reveal that all samples are fibre textured and that there are characteristic distributions of the residual stresses vs. sample diameter. In case of the cold forward extruded samples at low degrees of natural strain, the rod kernel is under compressive residual stresses which are balanced by tensile residual stresses in the outer part of the sample. In contrast to this, the outer part of the hot extruded sample is under compressive macroscopic stresses which are balanced by tensile macroscopic residual stresses in the inner part of the sample.


2021 ◽  
Author(s):  
Jason Meyer ◽  
Stefan Habean ◽  
Dan Londrico ◽  
Justin Sims

Abstract The proposition that compressive residual stresses are beneficial in improving the service life of components subject to rolling contact fatigue is well documented. However, the exact nature of the relationship between effective case depth (ECD) and the residual stress state is not well understood for components with deep case depth (>0.050inches, 1.27mm). It is expected that compressive residual stresses will gradually transition to tensile stresses as the case depth increases beyond a threshold value. In addition, the strain-induced transformation of retained austenite and its influence on the residual stress state of components resulting from service will be explored. This study will measure the residual stress state of components prepared with various ECD before and after simulated service with the goal of determining where the compressive to tensile transition occurs. Residual stress and retained austenite measurements will be conducted using X-ray diffraction.


2013 ◽  
Vol 768-769 ◽  
pp. 519-525 ◽  
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

The paper deals with the effect of different shot peening (SP) treatment conditions on the ENAW 7075-T651 aluminium alloy. Suitable residual stress profile increases the applicability and life cycle of mechanical parts, treated by shot peening. The objective of the research was to establish the optimal parameters of the shot peening treatment of the aluminium alloy in different precipitation hardened states with regard to residual stress profiles in dynamic loading. Main deformations and main residual stresses were calculated on the basis of electrical resistance. The resulting residual stress profiles reveal that stresses throughout the thin surface layer of all shot peened specimens are of compressive nature. The differences can be observed in the depth of shot peening and the profile of compressive residual stresses. Under all treatment conditions, the obtained maximum value of compressive residual stress ranges between -200 MPa and -300 MPa at a depth between 250 μm and 300 μm. Comparison of different temperature-hardened aluminium alloys shows that changes in the Almen intensity values have greater effect than coverage in the depth and profile of compressive residual stresses. Positive stress ratio of R=0.1 was selected. Wöhler curves were determined in the areas of maximum bending loads between 30 - 65 % of material's tensile strength, measured at thinner cross-sections of individual specimens. The results of material fatigue testing differ from the level of shot peening on the surface layer.


2022 ◽  
Vol 327 ◽  
pp. 272-278
Author(s):  
Elisa Fracchia ◽  
Federico Simone Gobber ◽  
Claudio Mus ◽  
Yuji Kobayashi ◽  
Mario Rosso

Nowadays, one of the most crucial focus in the aluminium-foundry sector is the production of high-quality castings. Mainly, High-Pressure Die Casting (HPDC) is broadly adopted, since by this process is possible to realize aluminium castings with thin walls and high specific mechanical properties. On the other hand, this casting process may cause tensile states into the castings, namely residual stresses. Residual stresses may strongly affect the life of the product causing premature failure of the casting. Various methods can assess these tensile states, but the non-destructive X-Ray method is the most commonly adopted. Namely, in this work, the residual stress analysis has been performed through Sinto-Pulstec μ-X360s. Detailed measurements have been done on powertrain components realized in aluminium alloy EN AC 46000 through HPDC processes to understand and prevent dangerous residual stress state into the aluminium castings. Furthermore, a comparison with stresses induced by Rheocasting processes is underway. In fact, it is well known that Semi-Solid metal forming combines the advantages of casting and forging, solving safety and environmental problems and possibly even the residual stress state can be positively affected.


Author(s):  
V Sura ◽  
S Mahadevan

Shattered rim cracking, propagation of a subsurface crack parallel to the tread surface, is one of the dominant railroad wheel failure types observed in North America. This crack initiation and propagation life depends on several factors, such as wheel rim thickness, wheel load, residual stresses in the rim, and the size and location of material defects in the rim. This article investigates the effect of the above-mentioned parameters on shattered rim cracking, using finite element analysis and fracture mechanics. This cracking is modelled using a three-dimensional, multiresolution, elastic–plastic finite element model of a railroad wheel. Material defects are modelled as mathematically sharp cracks. Rolling contact loading is simulated by applying the wheel load on the tread surface over a Hertzian contact area. The equivalent stress intensity factor ranges at the subsurface crack tips are estimated using uni-modal stress intensity factors obtained from the finite element analysis and a mixed-mode crack growth model. The residual stress and wheel wear effects are also included in modelling shattered rim cracking. The analysis results show that the sensitive depth below the tread surface for shattered rim cracking ranges from 19.05 to 22.23 mm, which is in good agreement with field observations. The relationship of the equivalent stress intensity factor (Δ K eq) at the crack tip to the load magnitude is observed to be approximately linear. The analysis results show that the equivalent stress intensity factor (Δ K eq) at the crack tip depends significantly on the residual stress state in the wheel. Consideration of as-manufactured residual stresses decreases the Δ K eq at the crack tip by about 40 per cent compared to that of no residual stress state, whereas consideration of service-induced residual stresses increases the Δ K eq at the crack tip by about 50 per cent compared to that of as-manufactured residual stress state. In summary, the methodology developed in this article can help to predict whether a shattered rim crack will propagate for a given set of parameters, such as load magnitude, rim thickness, crack size, crack location, and residual stress state.


2013 ◽  
Vol 433-435 ◽  
pp. 1898-1901
Author(s):  
Li Juan Cao ◽  
Shou Ju Li ◽  
Zi Chang Shangguan

Shot peening is a manufacturing process intended to give components the final shape and to introduce a compressive residual state of stress inside the material in order to increase fatigue life. The modeling and simulation of the residual stress field resulting from the shot peening process are proposed. The behaviour of the peened target material is supposed to be elastic plastic with bilinear characteristics. The results demonstrated the surface layer affected by compressive residual stresses is very thin and the peak is located on the surface.


Sign in / Sign up

Export Citation Format

Share Document