Rates of salinization by free convection in high-permeability sediments: insights from numerical modeling and application to the Dutch coastal area

2003 ◽  
Vol 11 (5) ◽  
pp. 549-559 ◽  
Author(s):  
Vincent E. A. Post ◽  
Henk Kooi
2017 ◽  
Vol 5 (1) ◽  
pp. 31
Author(s):  
Laila Mouakkir ◽  
Soumia Mordane

The objective of this study is to simulate the tidal circulation in the coastal area Casablanca-Mohammedia located on the Moroccan Atlantic. Simulations of the tidal currents of this zone use the 2D version of the MECCA (Model for Estuarine and Coastal Circulation Assessment). These simulations are based on the depth-integrated dynamical equations of turbulent motion. Equations are solved by using the implicit finite-differences techniques. The modelincorporates the actual bottom topography and the effects of the Earth rotation. As forcing mechanism, the model uses the tidal heights prescribed along the open boundaries.As first results, numerical experiments show that the model provides good results compared to those of the altymetric model TPXO.


2007 ◽  
Vol 5 ◽  
pp. 221-226
Author(s):  
L.A. Kovaleva ◽  
V.N. Kireev ◽  
A.А. Musin

The numerical modeling of the heating of a high-viscosity hydrocarbon liquid, whose viscosity and thermal conductivity depend on the temperature, is carried out in this research. A system of equations for free convection is solved in the linear Boussinesq approximation. The dynamics of changes in the temperature field and convective structures in a liquid is studied.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3267
Author(s):  
Donald O. Rosenberry ◽  
José Manuel Nieto López ◽  
Richard M. T. Webb ◽  
Sascha Müller

The efficiency of seepage meters, long considered a fixed property associated with the meter design, is not constant in highly permeable sediments. Instead, efficiency varies substantially with seepage bag fullness, duration of bag attachment, depth of meter insertion into the sediments, and seepage velocity. Tests conducted in a seepage test tank filled with isotropic sand with a hydraulic conductivity of about 60 m/d indicate that seepage meter efficiency varies widely and decreases unpredictably when the volume of the seepage bag is greater than about 65 to 70 percent full or less than about 15 to 20 percent full. Seepage generally decreases with duration of bag attachment even when operated in the mid-range of bag fullness. Stopping flow through the seepage meter during bag attachment or removal also results in a decrease in meter efficiency. Numerical modeling indicates efficiency is inversely related to hydraulic conductivity in highly permeable sediments. An efficiency close to 1 for a meter installed in sediment with a hydraulic conductivity of 1 m/d decreases to about 60 and then 10 percent when hydraulic conductivity is increased to 10 and 100 m/d, respectively. These large efficiency reductions apply only to high-permeability settings, such as wave- or tidally washed coarse sand or gravel, or fluvial settings with an actively mobile sand or gravel bed, where low resistance to flow through the porous media allows bypass flow around the seepage cylinder to readily occur. In more typical settings, much greater resistance to bypass flow suppresses small changes in meter resistance during inflation or deflation of seepage bags.


2021 ◽  
pp. 116324
Author(s):  
Honghe Nong ◽  
Abdulnasser Mahmood Fatah ◽  
S.A. Shehzad ◽  
T. Ambreen ◽  
Mahmoud M. Selim ◽  
...  

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Min Yan ◽  
Chunhui Lu ◽  
Jie Yang ◽  
Yifan Xie ◽  
Jian Luo

Density-driven free convection in porous media is highly affected by large-scale heterogeneity, typical of which are low- or high-permeability inclusions imbedded in homogeneous porous media. In this research, we applied the modified Elder problem to investigate the impact of low- or high-permeability inclusions on the migration of a dense, unstable salt plume. Sensitivity analyses were conducted in terms of the permeability contrast, the effective area (the area of the inclusion beneath the source zone), and the distance of the inclusion from the source zone, all of which were found to play a significant role in controlling the total mass flux released from the source into the media. Results show that (1) a high-permeability inclusion has stronger effects than low-permeability inclusion, due to significantly unbalanced solute distributions caused by accelerated solute transport, (2) the inclusion with a larger effective area has more potential to influence free convection, (3) free convection is more sensitive to the low-/high-permeability inclusion vertically closer to the source zone, and (4) free convection is more susceptible to the low-permeability inclusion horizontally closer to the source zone. For high-permeability inclusions, the inclusion horizontally closer to the source zone influences the transport process more significantly at the early stage, and conversely, the inclusion far from the source zone has a later impact. The results obtained could offer significant implications for understanding unstable density-driven flow and solute transport in porous media with structured heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document