Candidate areas for wastewater stabilization ponds utilizing GIS and metal adsorption capacities of native clayey deposits: Mornag case study (NE Tunisia)

2018 ◽  
Vol 78 (6) ◽  
pp. 4567-4578
Author(s):  
Jamel Ayari ◽  
Rim Azouzi ◽  
Abdelkrim Charef ◽  
Amor Smati
Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 486
Author(s):  
Alcina Johnson Sudagar ◽  
Slávka Andrejkovičová ◽  
Fernando Rocha ◽  
Carla Patinha ◽  
Maria R. Soares ◽  
...  

Metakaolins (MKs) prepared from low-grade kaolins located in the Alvarães (A) and Barqueiros (B) regions of Portugal were used as the aluminosilicate source to compare their effect on the compressive strength and heavy metal adsorption of geopolymers. Natural zeolite, an inexpensive, efficient adsorbent, was used as an additive in formulations to enhance geopolymers’ adsorption capacities and reduce MK utilization’s environmental footprint. Geopolymers were synthesized with the replacement of MK by zeolite up to 75 wt.% (A25, B25—25% MK 75% zeolite; A50, B50—50% MK 50% zeolite; A75, B75—75% MK 25% zeolite; A100, B100—100% MK). The molar ratios of SiO2/Al2O3 and Na2O/Al2O3 were kept at 1 to reduce the sodium silicate and sodium hydroxide environmental impact. Geopolymers’ crystallography was identified using X-ray diffraction analysis. The surface morphology was observed by scanning electron microscopy to understand the effect of zeolite incorporation. Chemical analysis using X-ray fluorescence spectroscopy and energy dispersive X-ray spectroscopy yielded information about the geopolymers’ Si/Al ratio. Compressive strength values of geopolymers obtained after 1, 14, and 28 days of curing indicate high strengths of geopolymers with 100% MK (A100—15.4 MPa; B100—32.46 MPa). Therefore, zeolite did not aid in the improvement of the compressive strength of both MK-based geopolymers. The heavy metal (Cd2+, Cr3+, Cu2+, Pb2+, and Zn2+) adsorption tests exhibit relatively higher adsorption capacities of Barqueiros MK-based geopolymers for all the heavy metals except Cd2+. Moreover, zeolite positively influenced divalent cations’ adsorption on the geopolymers produced from Barqueiros MK as B75 exhibits the highest adsorption capacities, but such an influence is not observed for Alvarães MK-based geopolymers. The general trend of adsorption of the heavy metals of both MK-based geopolymers is Pb2+ > Cd2+ > Cu2+ > Zn2+ > Cr3+ when fitted by the Langmuir isotherm adsorption model. The MK and zeolite characteristics influence geopolymers’ structure, strength, and adsorption capacities.


2007 ◽  
Vol 55 (11) ◽  
pp. 93-101 ◽  
Author(s):  
M.A. Babu ◽  
M.M. Mushi ◽  
N.P. van der Steen ◽  
C.M. Hooijmans ◽  
H.J. Gijzen

Nitrogen removal in wastewater stabilization ponds is poorly understood and effluent monitoring data show a wide range of differences in ammonium. For effluent discharge into the environment, low levels of nitrogen are recommended. Nitrification is limiting in facultative wastewater stabilization ponds. The reason why nitrification is considered to be limiting is attributed to low growth rate and wash out of the nitrifiers. Therefore to maintain a population, attached growth is required. The aim of this research is to study the relative contribution of bulk water and biofilms with respect to nitrification. The hypothesis is that nitrification can be enhanced in stabilization ponds by increasing the surface area for nitrifier attachment. In order to achieve this, transparent pond reactors representing water columns in algae WSP have been used. To discriminate between bulk and biofilm activity, 5-day batch activity tests were carried out with bulk water and biofilm sampled. The observed value for Rnitrbulk was 2.7 × 10−1 mg-N L−1 d−1 and for Rbiofilm was 1,495 mg-N m−2 d −1. During the 5 days of experiment with the biofilm, ammonia reduction was rapid on the first day. Therefore, a short-term biofilm activity test was performed to confirm this rapid decrease. Results revealed a nitrification rate, Rbiofilm, of 2,125 mg-N m−2 d−1 for the first 5 hours of the test, which is higher than the 1,495 mg-N m−2 d−1, observed on the first day of the 7-day biofilm activity test. Rbiofilm and Rnitrbulk values obtained in the batch activity tests were used as parameters in a mass balance model equation. The model was calibrated by adjusting the fraction of the pond volume and biofilm area that is active (i.e. aerobic). When assuming a depth of 0.08 m active upper layer, the model could describe well the measured effluent values for the pond reactors. The calibrated model was validated by predicting effluent Kjeldahl nitrogen of algae ponds in Palestine and Colombia. The model equation predicted well the effluent concentrations of ponds in Palestine.


Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06207
Author(s):  
Joshua N. Edokpayi ◽  
John O. Odiyo ◽  
Oluwaseun E. Popoola ◽  
Titus A.M. Msagati

Author(s):  
Mohammad Rezvani Ghalhari ◽  
Harald Schönberger ◽  
Behnam Askari Lasaki ◽  
Keyvan Asghari ◽  
Esfandiar Ghordouei Milan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document