Correlation Between Shear Strength of Soils and Water Content Ratio as a Substitute for Liquidity Index

Author(s):  
Harshdeep Singh ◽  
Ashok Kumar Gupta
2017 ◽  
Vol 35 (4) ◽  
pp. 1577-1586 ◽  
Author(s):  
Beshy Kuriakose ◽  
Benny Mathews Abraham ◽  
A. Sridharan ◽  
Babu T. Jose

Clay Minerals ◽  
2017 ◽  
Vol 52 (4) ◽  
pp. 509-519 ◽  
Author(s):  
Giovanni Spagnoli ◽  
Martin Feinendegen

AbstractThe detection of the plastic limit of clays is subject to human error. Several attempts have been made to correlate across studies the geotechnical properties of fine-grained soils (water content, liquidity index, shear strength, etc.). Based on the premise that the liquidity index and water content ratio can be correlated directly, an alternative method to obtain indirectly the plastic limit is suggested here. The present study investigated 40 natural clayey samples of various mineralogies and origins and other publicly available data, where Atterberg limits and undrained shear strength values obtained with the vane shear tests were given. The liquidity index and water-content ratio correlate very well for defined undrained shear strength values of the clays. Solving the liquidity index equation for the plastic limit, estimated plastic limit values obtained by the liquidity index/water-content ratio relationship were compared with laboratory plastic-limit values. Preliminary results based on 62 values show an exponential trend with a multiple regression coefficient of 0.79. The data need to be confirmed on a larger database, however.


2020 ◽  
Vol 857 ◽  
pp. 203-211
Author(s):  
Majid Hamed ◽  
Waleed S. Sidik ◽  
Hanifi Canakci ◽  
Fatih Celik ◽  
Romel N. Georgees

This study was undertaken to investigate some specific problems that limit a safe design and construction of structures on problematic soils. An experimental study was carried out to examine the influence of loading rate and moisture content on shear strength of organic soil. Influece of moisture content on interface friction between organic soil and structural materials was also attempted. A commonly used soil in Iraq was prepared at varying moisture contents of 39%, 57% and 75%. The experimental results showed that the increase in water content will decrease the shear stress and the internal friction angle. An increase of the shearing rate was found to decrease the shear stress and internal friction angle for all percetanges of water contents. Further, direct shear tests were carried out to detect the interface shear stress behavior between organic soil and structural materials. The results revealed that the increase in water content was shown to have significant negetavie effects on the interface internal friction and angle shear strength.


2021 ◽  
Vol 3 (2) ◽  
pp. 74-80
Author(s):  
Talal Masoud

The results of the direct shear test on Jerash expansive soil show the effect of the initial water content on the cohesion (c) and on the angel of internal friction ( ) [shear strength parameters].it show that, as the initial water increase, the cohesion (c) of Jerash expansive soil also increase up to the shrinkage limit, after that increase of water even small amount, decrease the cohesion of the soil. On the other hand, the results of direct shear test show also  that as the water content increase, the angle of internal friction ( )remain unchanged up to shrinkage limit , any increase of water cause a large decrease on the angle of internal friction of Jerash expansive soil.


Sign in / Sign up

Export Citation Format

Share Document