Thermal-hydraulic-mechanical coupling behavior and frost heave mitigation in freezing soil

Author(s):  
Yukun Ji ◽  
Guoqing Zhou ◽  
Veerle Vandeginste ◽  
Yang Zhou
2017 ◽  
Vol 78 (1) ◽  
pp. 2309-2316 ◽  
Author(s):  
Keiji Yashiro ◽  
Tatsuya Kawada ◽  
Satoshi Watanabe ◽  
Mayu Muramatsu ◽  
Tadashi Sakamoto ◽  
...  

2020 ◽  
pp. 2150002
Author(s):  
XIAOLI LI ◽  
LI CHEN ◽  
XIAOYAN LIU ◽  
YU ZHANG ◽  
LIFU CUI

The geological environment along a buried pipeline in permafrost regions is complex, where differential frost heave often occurs. To understand the changes in the stress behavior of pipeline structures caused by corrosion while laying them in permafrost regions, we established a thermo-mechanical coupling model of buried pipeline with corrosion defects by using finite element software. Numerical simulation analysis of buried pipeline was conducted. The effects of the frost heave length, the length of the transition section, the corrosion depth, and the corrosion length on the stress displacement were obtained. These analyses showed that the stresses and displacements of the pipeline with corrosion defects in permafrost regions can be simulated by using the finite element software numerical simulation method. Afterward, the corrosion resistances of pipelines with different corrosion lengths and depths were investigated via an electrochemical testing method. These results can provide some useful insights into the possible mechanical state of buried pipeline with regard to their design and construction, as well as some useful theoretical references for simulating real-time monitoring and safety analysis for their operation in permafrost regions.


1977 ◽  
Vol 14 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Wayne D. Arvidson ◽  
Norbert R. Morgenstern

A study to observe the effects of overburden pressure and other parameters on the freezing behavior of a saturated soil was undertaken. A linear relationship between effective overburden pressure and the flow of water into or out of a freezing soil was observed. The effective pressure at which no flow occurred was termed the shutoff pressure. At pressures less than the shutoff pressure water was sucked to the freezing front resulting in segregated ice, ice lensing, and heaving. This heaving could significantly exceed the heave due to the volumetric expansion of the in situ porewater. At pressures greater than the shutoff pressure water was expelled from the freezing front thereby reducing the volume of in situ water and resulting in a relatively small amount of heave. Shutoff pressure was observed to depend on soil type, stress history, and freezing temperature. The effects of overburden pressure upon flow of water in a freezing soil and frost heave were recommended as additional criteria for assessing soil frost susceptibility.


2003 ◽  
Vol 49 (164) ◽  
pp. 69-80 ◽  
Author(s):  
Rorik A. Peterson ◽  
William B. Krantz

AbstractThe genesis of some types of patterned ground, including hummocks, frost boils and sorted stone circles, has been attributed to differential frost heave (DFH). However, a theoretical model that adequately describes DFH has yet to be developed and validated. In this paper, we present a mathematical model for the initiation of DFH, and discuss how variations in physical (i.e. soil/vegetation properties) and environmental (i.e. ground/air temperatures) properties affect its occurrence and length scale. Using the Fowler and Krantz multidimensional frost-heave equations, a linear stability analysis anda quasi-steady-state real-time analysis are performed. Results indicate that the following conditions positively affect the spontaneous initiation of DFH: silty soil, small Young’s modulus, small non-uniform surface heat transfer or cold uniform surface temperatures, and small freezing depths. The initiating mechanism for DFH is multidimensional heat transfer within the freezing soil. Numerical integration of the linear growth rates indicates that expression of surface patterns can become evident on the 10–100 year time-scale.


Sign in / Sign up

Export Citation Format

Share Document