Impact of environmental acidity on the geomechanical and mineralogical behavior of marine clay

Author(s):  
Huayang Lei ◽  
Lei Wang ◽  
Weidi Zhang ◽  
Mingjing Jiang ◽  
Yu Bo ◽  
...  
Keyword(s):  
Author(s):  
Bengt Fellenius

On April 4, 2018, 209 days after driving, a static loading test was performed on a 50 m long, strain-gage instrumented, square 275-mm diameter, precast, shaft-bearing (“floating”) pile in Göteborg, Sweden. The soil profile consisted of a 90 m thick, soft, postglacial, marine clay. The groundwater table was at about 1.0 m depth. The undrained shear strength was about 20 kPa at 10 m depth and increased linearly to about 80 kPa at 55m depth. The load-distribution at the peak load correlated to an average effective stress beta-coefficient of 0.19 along the pile or, alternatively, a unit shaft shear resistance of 15 kPa at 10 m depth increasing to about 65 kPa at 50 m depth, indicating an α-coefficient of about 0.80. Prior to the test, geotechnical engineers around the world were invited to predict the load-movement curve to be established in the test—22 predictions from 10 countries were received. The predictions of pile stiffness, and pile head displacement showed considerable scatter, however. Predicted peak loads ranged from 65% to 200% of the actual 1,800-kN peak-load, and 35% to 300% of the load at 22-mm movement.


2020 ◽  
Vol 20 (6) ◽  
pp. 04020050
Author(s):  
Huayang Lei ◽  
Jinfeng Lou ◽  
Xin Li ◽  
Mingjing Jiang ◽  
Cike Tu

Author(s):  
Xiaobing Li ◽  
Jianpeng Chen ◽  
Xiuqing Hu ◽  
Hongtao Fu ◽  
Jun Wang ◽  
...  

2021 ◽  
Vol 224 ◽  
pp. 108747
Author(s):  
Jun Wang ◽  
Ming Dai ◽  
Yuanqiang Cai ◽  
Lin Guo ◽  
Yunguo Du ◽  
...  

2021 ◽  
Author(s):  
Hailei Kou ◽  
Hao Jing ◽  
Chuangzhou Wu ◽  
Pengpeng Ni ◽  
Yiyi Wang ◽  
...  

1972 ◽  
Vol 9 (2) ◽  
pp. 127-136 ◽  
Author(s):  
M. Bozozuk

Large negative skin friction loads were observed on a 160 ft (49 m) steel pipe test pile floating in marine clay. The test pile was driven, open-ended, on the centerline of a 30 ft (9 m) high granular approach fill on the Quebec Autoroute near Berthierville. Since the installation was made in 1966 the fill has settled 21 in. (53 cm), dragging the pile down with it. Negative skin friction acting along the upper surface of the pile was resisted by positive skin friction acting along the lower end as it penetrated the underlying clay. Under these conditions the pile compressed about [Formula: see text] (2 cm). Analysis of the axial strains indicated that a peak compressive load of 140 t developed at the inflection point between negative and positive skin friction 73 ft (22 m) below the top of the pile. Negative and positive skin friction acting on the upper surface of the pile exceeded the in situ shear strength and approached the drained strength of the soil where excess pore water pressures had dissipated. At the lower end where the positive excess pore pressures were high and relative movement between the pile and the soil was large, the positive skin friction approached the remoulded strength as measured with the field vane. Skin friction was increasing, however, as positive escess pore pressures dissipated.This paper shows that skin friction loads are related to the combination of (a) in situ horizontal effective stresses, (b) horizontal stresses due to embankment loads, and (c) horizontal stresses due to differential settlement of the fill.


2019 ◽  
Vol 9 (1) ◽  
pp. 481-489
Author(s):  
D.C. Lat ◽  
I.B.M. Jais ◽  
N. Ali ◽  
B. Baharom ◽  
N.Z. Mohd Yunus ◽  
...  

AbstractPolyurethane (PU) foam is a lightweight material that can be used efficiently as a ground improvement method in solving excessive and differential settlement of soil foundation mainly for infrastructures such as road, highway and parking spaces. The ground improvement method is done by excavation and removal of soft soil at shallow depth and replacement with lightweight PU foam slab. This study is done to simulate the model of marine clay soil integrated with polyurethane foam using finite element method (FEM) PLAXIS 2D for prediction of settlement behavior and uplift effect due to polyurethane foam mitigation method. Model of soft clay foundation stabilized with PU foam slab with variation in thickness and overburden loads were analyzed. Results from FEM exhibited the same trend as the results of the analytical method whereby PU foam has successfully reduced the amount of settlement significantly. With the increase in PU foam thickness, the settlement is reduced, nonetheless the uplift pressure starts to increase beyond the line of effective thickness. PU foam design chart has been produced for practical application in order to adopt the effective thickness of PU foam within tolerable settlement value and uplift pressure with respect to different overburden loads for ground improvement works.


Clay Minerals ◽  
1985 ◽  
Vol 20 (4) ◽  
pp. 477-491 ◽  
Author(s):  
K. Pederstad ◽  
P. Jørgensen

AbstractMarine clays of SE Norway lifted above sea-level have been subjected to weathering for 8500 years. As a result of this weathering a major part of the quartz, K-feldspar and plagioclase disappeared in the 0·2–0·6 µm fraction. Trioctahedral illite passed through the sequence: illite → mixed-layer illite-vermiculite → vermiculite → dissolution. This transformation started at a depth of 3 m, and the 2:1 layers dissolved in the upper part of the profile. Chlorite was broken down by weathering into finer particles. As a result, chlorite was first removed from the coarser fractions. Dioctahedral illite in the clay fractions passed through the following transformations in the upper part of the profile: illite → mixed-layer illite-vermiculite → vermiculite → chloritized vermiculite. Weathering models for the size fractions 0·2–0·6 and 0·2–2 µm showed that total amounts of dissolved material from these fractions in the upper part of the profile could be calculated as 55 and 38%, respectively. Dioctahedral 2:1 layers were most resistant to weathering, resulting in 75% dioctahedral phyllosilicates in the 0·2–0·6 µm fraction in the uppermost part of the profile, in contrast to 30% dioctahedral illite in the unweathered sample. This study illustrates the importance of investigating different fractions and not only material finer than 2 µm.


Sign in / Sign up

Export Citation Format

Share Document