Fuel economy standards for light duty vehicles and their potential to aid Iran toward achieving fuel saving and emissions reduction

2013 ◽  
Vol 16 (3) ◽  
pp. 661-666 ◽  
Author(s):  
M. Mohammadnejad ◽  
M. Ghazvini ◽  
T. M. I. Mahlia
2015 ◽  
Vol 157 ◽  
pp. 762-776 ◽  
Author(s):  
Zhiming Gao ◽  
Scott J. Curran ◽  
James E. Parks ◽  
David E. Smith ◽  
Robert M. Wagner ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
pp. 12
Author(s):  
Ram Vijayagopal ◽  
Aymeric Rousseau

The benefits of electrified powertrains for light-duty vehicles are well understood, however sufficient published information is not available on the benefits of advanced powertrains on the various types of medium and heavy duty vehicles. Quantifying the benefits of powertrain electrification will help fleet operators understand the advantages or limitations in adopting electrified powertrains in their truck fleets. Trucks vary in size and shape, as they are designed for specific applications. It is necessary to model each kind of truck separately to understand what kind of powertrain architecture will be feasible for their daily operations. This paper examines 11 types of vehicles and 5 powertrain technology choices to quantify the fuel saving potential of each design choice. This study uses the regulatory cycles proposed by the US Environmental Protection Agency (EPA) for measuring fuel consumption.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Chih-Hsien Yu ◽  
Chyuan-Yow Tseng ◽  
Shiunn-Cheng Chuang

In an attempt to improve the fuel economy and reduce the exhaust emissions of motorcycles, some manufactures have developed commercialized motorcycles equipped with automatic idling-stop and go (AISG) functionality. Even though research efforts devoted to the idling-stop strategy have demonstrated its effectiveness, motorcycles equipped with the AISG device are not popular because the general public still has some concerns about them. This paper aims to evaluate the benefits and feasibility of a commercialized motorcycle with AISG functionality with regard to the public's concerns about fuel economy and emission problems during engine restart transients. In order to verify the accuracy of the analytical results and control for variable driver characteristics, a motorcycle chassis dynamometer was used to recreate the urban driving pattern. Furthermore, the feasibility of fuel-saving and emissions improvement by adjusting fuel-injection signal of the engine control unit (ECU) during engine restart operation was also evaluated. The experimental results showed that the addition of the fuel-injection modulation plus idling-stop strategy can improve the fuel economy rate by up to 12.2% and reduce carbon monoxide (CO) emission by up to 36.95% in comparison with the non-idling stop case.


Author(s):  
Nicholas Lutsey ◽  
Daniel Sperling

In the past 20 years, the acceleration performance of light-duty vehicles in the United States has improved substantially while vehicles have gotten larger and heavier. Over the same period, fuel economy, measured as miles per gallon, has not improved. These data suggest that technological innovation in vehicles is not lagging but is not being used to improve vehicle fuel economy. This paper quantifies vehicle efficiency improvements in U.S. light-duty vehicles since 1975 as they relate to fuel consumption. Energy efficiency improvements have been strongly positive and relatively constant since 1975. The rapid rise in fuel economy in the late 1970s was due to a mix of efficiency improvements and downgrading of utility in the form of reduced size, power, and elimination of accessories and amenities (such as air conditioning). In contrast, since the mid-1980s, fuel economy has remained constant while the benefits of technological innovation were used to satisfy private desires (more power, size, and amenities), instead of the public interest (reduced greenhouse gas emissions and oil imports). An important policy question is how and to what extent future efficiency innovations might be directed to the public interest.


Sign in / Sign up

Export Citation Format

Share Document