scholarly journals Photocatalytic degradation of caffeine and E. coli inactivation using silver oxide nanoparticles obtained by a facile green co-reduction method

Author(s):  
Harshiny Muthukumar ◽  
Santosh Kumar Palanirajan ◽  
Manoj Kumar Shanmugam ◽  
Pugazhendhi Arivalagan ◽  
Sathyanarayana N. Gummadi
2021 ◽  
Author(s):  
Harshiny Muthukumar ◽  
Santosh Kumar Palanirajan ◽  
Manoj Kumar Shanmugam ◽  
Arivalagan Pugazhendhi ◽  
Sathyanarayana N. Gummadi

Abstract In this study, silver oxide nanoparticles (Ag2O-NPs) were synthesized from silver nitrate using green amaranth leaf extract as reducing agent. The degradation of caffeine and inactivation of Escherichia coli by Ag2O-NPs was studied under compact fluorescent lamp illumination irradiation. Apart from that, the antibacterial and antioxidant activities of Ag2O-NPs were also examined. Synthesized Ag2O-NPs were shaped like monodispersed husk, and cubic structured with surface area and average particle size was detected to be 100.21 (m2/g) and 81 nm respectively. Antioxidant efficacy of the Ag2O-NPs was evaluated using 1, 1-diphenyl-2-picrylhydrazyl and 91% inhibition was achieved with 100 µg Ag2O-NPs. Bacteriocidic propensity of Ag2O-NPs was examined against the S. aureus and P. aeruginosa by disc diffusion, minimum inhibitory concentration (MIC), Live and dead assay. It was observed that the NPs have higher bactericidal effect on Gram-negative as compared to Gram-positive bacteria. Up to 96% photocatalytic inactivation of E. coli was achieved using 30 µg/mL of NPs, Photocatalytic degradation of caffeine (50 ppm initial concentration) was observed to be 99% at pH 9 in 15 h using 50 mg/L of Ag2O NPs. These results indicate that Ag2O NPs can be employed in environmental applications like harmful bacteria inactivation and organic pollutants degradation.


2017 ◽  
Vol 26 (4) ◽  
pp. 1025-1035 ◽  
Author(s):  
Neveen A. Salem ◽  
Mohammed A. Wahba ◽  
Wael H. Eisa ◽  
Marwa El-Shamarka ◽  
Wagdy Khalil

Biomaterials ◽  
2014 ◽  
Vol 35 (13) ◽  
pp. 4223-4235 ◽  
Author(s):  
Ang Gao ◽  
Ruiqiang Hang ◽  
Xiaobo Huang ◽  
Lingzhou Zhao ◽  
Xiangyu Zhang ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2009 ◽  
Author(s):  
Łukasz Laskowski ◽  
Anna Majtyka-Piłat ◽  
Krzysztof Cpałka ◽  
Maciej Zubko ◽  
Magdalena Laskowska

The synthesis routes are presented for the preparation of nanocomposites composed of nanocrystals placed inside SBA-15 silica pores. The procedures assume treating the silica channels as nanoreactors, where nanocrystals are created as a result of thermal decomposition of internal functional units. Its sizes and chemical composition can be modified by the change of functional group types and density inside silica channels. The procedure is demonstrated by the example of copper pyrophosphate quantum dots and silver oxide nanoparticles inside silica mezochannels. The method can be easily adopted to other types of nanocrystals that can be synthesized inside silica nanoreactors.


RSC Advances ◽  
2013 ◽  
Vol 3 (6) ◽  
pp. 1732-1734 ◽  
Author(s):  
Xin Zhou ◽  
Yi Lu ◽  
Ling-Ling Zhai ◽  
Yue Zhao ◽  
Qing Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document