scholarly journals Speciation of termite gut protists: the role of bacterial symbionts

2001 ◽  
Vol 4 (4) ◽  
pp. 203-208 ◽  
Author(s):  
Michael F. Dolan
2020 ◽  
Author(s):  
Robin Guilhot ◽  
Antoine Rombaut ◽  
Anne Xuéreb ◽  
Kate Howell ◽  
Simon Fellous

AbstractInteractions between microbial symbionts of metazoan hosts are emerging as key features of symbiotic systems. Little is known about the role of such interactions on the maintenance of symbiosis through host’s life cycle. We studied the influence of symbiotic bacteria on the maintenance of symbiotic yeast through metamorphosis of the fly Drosophila melanogaster. To this end we mimicked the development of larvae in natural fruit. In absence of bacteria yeast was never found in young adults. However, yeast could maintain through metamorphosis when larvae were inoculated with symbiotic bacteria isolated from D. melanogaster faeces. Furthermore, an Enterobacteriaceae favoured yeast transstadial maintenance. Because yeast is a critical symbiont of D. melanogaster flies, bacterial influence on host-yeast association may have consequences for the evolution of insect-yeast-bacteria tripartite symbiosis and their cooperation.Summary statementBacterial symbionts of Drosophila influence yeast maintenance through fly metamorphosis, a novel observation that may have consequences for the evolution of insect-yeast-bacteria interactions.


2019 ◽  
Vol 19 (S1) ◽  
Author(s):  
María Laura Juárez ◽  
Lida Elena Pimper ◽  
Guillermo Enrique Bachmann ◽  
Claudia Alejandra Conte ◽  
María Josefina Ruiz ◽  
...  

Abstract Background The interaction between gut bacterial symbionts and Tephritidae became the focus of several studies that showed that bacteria contributed to the nutritional status and the reproductive potential of its fruit fly hosts. Anastrepha fraterculus is an economically important fruit pest in South America. This pest is currently controlled by insecticides, which prompt the development of environmentally friendly methods such as the sterile insect technique (SIT). For SIT to be effective, a deep understanding of the biology and sexual behavior of the target species is needed. Although many studies have contributed in this direction, little is known about the composition and role of A. fraterculus symbiotic bacteria. In this study we tested the hypothesis that gut bacteria contribute to nutritional status and reproductive success of A. fraterculus males. Results AB affected the bacterial community of the digestive tract of A. fraterculus, in particular bacteria belonging to the Enterobacteriaceae family, which was the dominant bacterial group in the control flies (i.e., non-treated with AB). AB negatively affected parameters directly related to the mating success of laboratory males and their nutritional status. AB also affected males’ survival under starvation conditions. The effect of AB on the behaviour and nutritional status of the males depended on two additional factors: the origin of the males and the presence of a proteinaceous source in the diet. Conclusions Our results suggest that A. fraterculus males gut contain symbiotic organisms that are able to exert a positive contribution on A. fraterculus males’ fitness, although the physiological mechanisms still need further studies.


2018 ◽  
Vol 1 (2) ◽  
pp. 43 ◽  
Author(s):  
Octanina Sari Sijabat ◽  
Marheni Marheni ◽  
Darma Bakti

AbstractOryctes rhinoceros L. has symbioses with micro organisms in their hind guts which further break down plant material consumed by beetle. The aim of this research is to determine the identification of the existence of the bacterial species in the hind gut larvae of the symbiotic bacteria using biochemical test and analysis based on 16S rRNA. The result of this research indicate that there were two different bacterials: Bacillus siamensis and Bacillus stratosphericus found. The bacteria was used for starting the composting and more specifically, the Bacillus siamensis can speed up composting with the end result at C/N 13.16.Keywords: Larvae O. rhinoceros L, Bacterial Symbionts, 16S rDNA, Composting


Author(s):  
Vincent Hervé ◽  
Pengfei Liu ◽  
Carsten Dietrich ◽  
David Sillam-Dussès ◽  
Petr Stiblik ◽  
...  

“Higher” termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different gut compartments of eight higher termite species that encompass 17 prokaryotic phyla. By iteratively building genome trees for each clade, we significantly improved the initial automated assignment, frequently up to the genus level. We recovered MAGs from most of the termite-specific clusters in the radiation of, e.g., Planctomycetes, Fibrobacteres, Bacteroidetes, Euryarchaeota, Bathyarchaeota, Spirochaetes, Saccharibacteria, and Firmicutes, which to date contained only few or no representative genomes. Moreover, the MAGs included abundant members of the termite gut microbiota. This dataset represents the largest genomic resource for arthropod-associated microorganisms available to date and contributes substantially to populating the tree of life. More importantly, it provides a backbone for studying the metabolic potential of the termite gut microbiota, including the key members involved in carbon and nitrogen biogeochemical cycles, and important clues that may help cultivating representatives of these understudied clades.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8614 ◽  
Author(s):  
Vincent Hervé ◽  
Pengfei Liu ◽  
Carsten Dietrich ◽  
David Sillam-Dussès ◽  
Petr Stiblik ◽  
...  

“Higher” termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different gut compartments of eight higher termite species that encompass 17 prokaryotic phyla. By iteratively building genome trees for each clade, we significantly improved the initial automated assignment, frequently up to the genus level. We recovered MAGs from most of the termite-specific clusters in the radiation of, for example, Planctomycetes, Fibrobacteres, Bacteroidetes, Euryarchaeota, Bathyarchaeota, Spirochaetes, Saccharibacteria, and Firmicutes, which to date contained only few or no representative genomes. Moreover, the MAGs included abundant members of the termite gut microbiota. This dataset represents the largest genomic resource for arthropod-associated microorganisms available to date and contributes substantially to populating the tree of life. More importantly, it provides a backbone for studying the metabolic potential of the termite gut microbiota, including the key members involved in carbon and nitrogen biogeochemical cycles, and important clues that may help cultivating representatives of these understudied clades.


2019 ◽  
Author(s):  
M.T. Jahn ◽  
K. Arkhipova ◽  
S.M. Markert ◽  
C. Stigloher ◽  
T. Lachnit ◽  
...  

AbstractPhages are increasingly recognized as important members of host associated microbial communities. While recent studies have revealed vast genomic diversity in the virosphere, the new frontier is to understand how newly discovered phages may affect higher order processes, such as in the context of host-microbe interactions. Here, we aim to understand the tripartite interplay between phages, bacterial symbionts and marine sponges. In a viromics approach, we discover 491 novel viral clusters and show that sponges, as filter-feeding organisms, are distinct viral niches. By using a nested sampling design, we show that each sponge individual of the four species investigated harbours its own unique virome, regardless of the tissue investigated. We further discover a novel, symbiont phage-encoded ankyrin domain-containing protein which appears to be widely spread in phages of many host-associated contexts including human. The ankyrin protein (ANKp) modulates the eukaryotic immune response against bacteria as confirmed in macrophage infection assays. We predict that the role of ANKp in nature is to facilitate co-existence in the tripartite interplay between phages, symbionts and sponges and possibly in many other host-microbe associations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jürgen C. Wierz ◽  
Paul Gaube ◽  
Dagmar Klebsch ◽  
Martin Kaltenpoth ◽  
Laura V. Flórez

Many phytophagous insects harbor symbiotic bacteria that can be transmitted vertically from parents to offspring, or acquired horizontally from unrelated hosts or the environment. In the latter case, plants are a potential route for symbiont transfer and can thus foster a tripartite interaction between microbe, insect, and plant. Here, we focus on two bacterial symbionts of the darkling beetle Lagria villosa that belong to the genus Burkholderia; the culturable strain B. gladioli Lv-StA and the reduced-genome strain Burkholderia Lv-StB. The strains can be transmitted vertically and confer protection to the beetle’s eggs, but Lv-StA can also proliferate in plants, and both symbiont strains have presumably evolved from plant pathogens. Notably, little is known about the role of the environment for the transmission dynamics and the maintenance of the symbionts. Through manipulative assays, we demonstrate the transfer of the symbionts from the beetle to wheat, rice and soybean plants, as well as leaf litter. In addition, we confirm that aposymbiotic larvae can pick up Lv-StA from dry leaves and the symbiont can successfully establish in the beetle’s symbiotic organs. Also, we show that the presence of plants and soil in the environment improves symbiont maintenance. These results indicate that the symbionts of L. villosa beetles are still capable of interacting with plants despite signatures of genome erosion and suggest that a mixed-mode of bacterial transmission is likely key for the persistence of the symbiosis.


Sign in / Sign up

Export Citation Format

Share Document